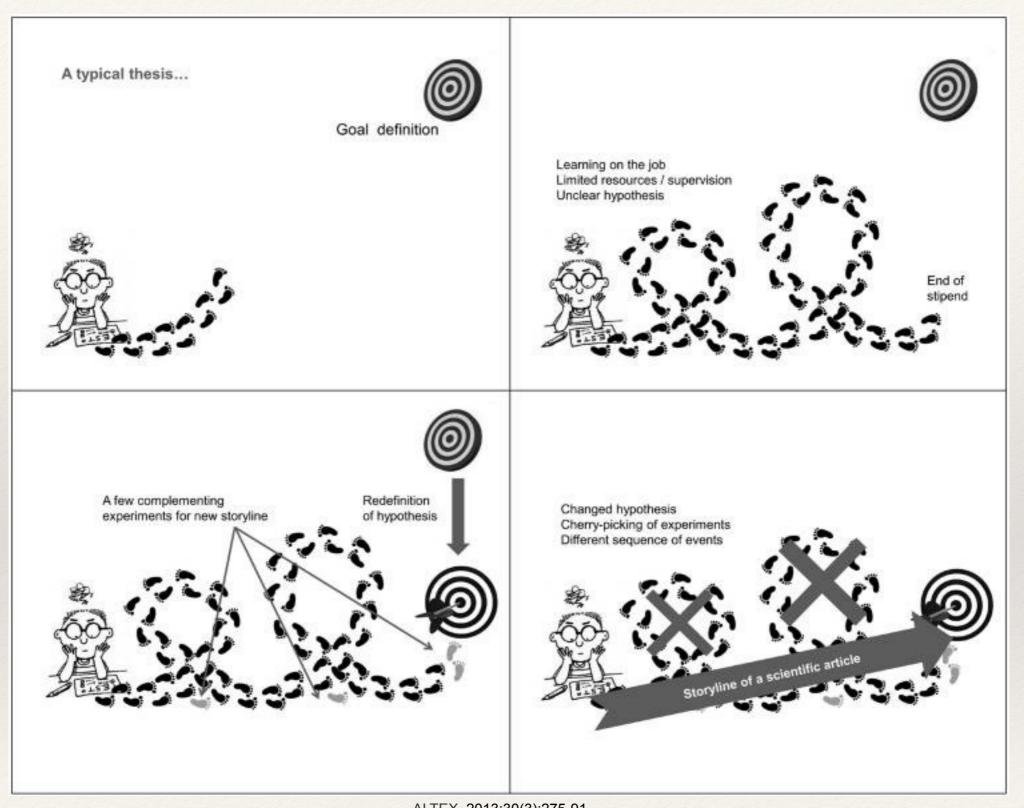
Lorem Ipsum Dolor

Publication bias


Bioinformatics journal club 18.03.2014 Silja Laht

Publication bias

- Positive results have a greater chance of being published
- Statistically significant outcomes have greater chance of being published

Where the bias comes from - authors

- The file drawer effect researchers don't bother to publish negative results
- If several associations were studied, only the positive associations are published
- The data is analysed from a different angle to find statistically significant and / or positive associations
- Studies with negative results are published in journals with lower impact factor

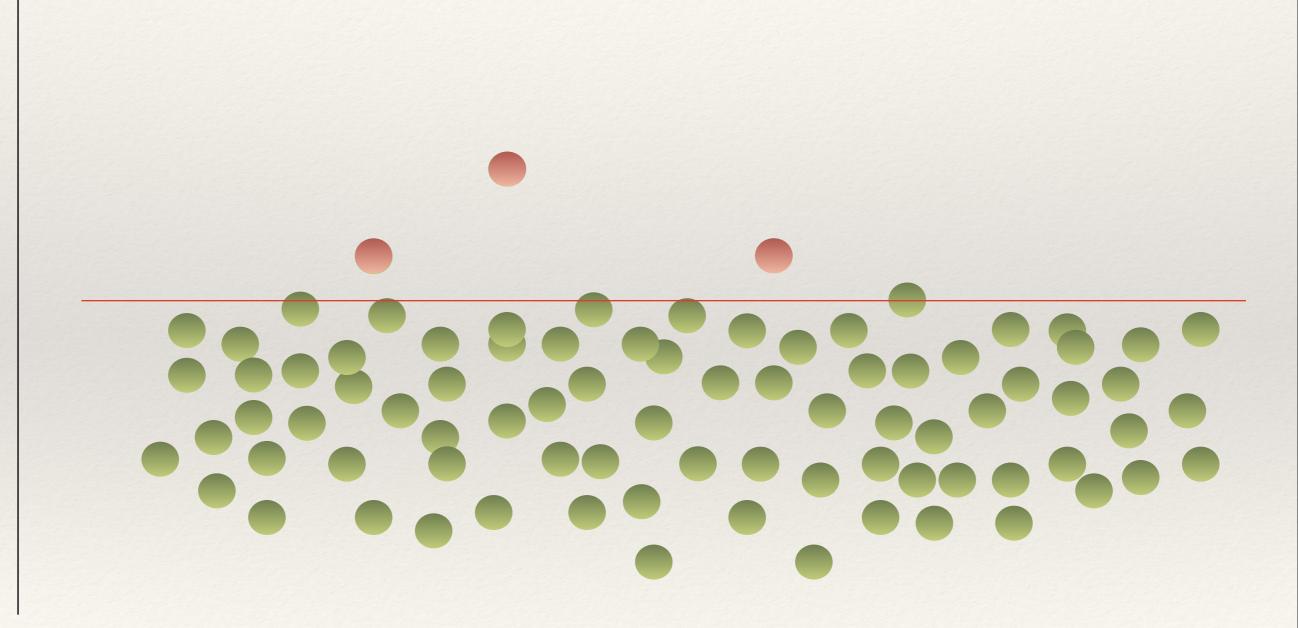
ALTEX. 2013;30(3):275-91.

Look back in anger - what clinical studies tell us about preclinical work.

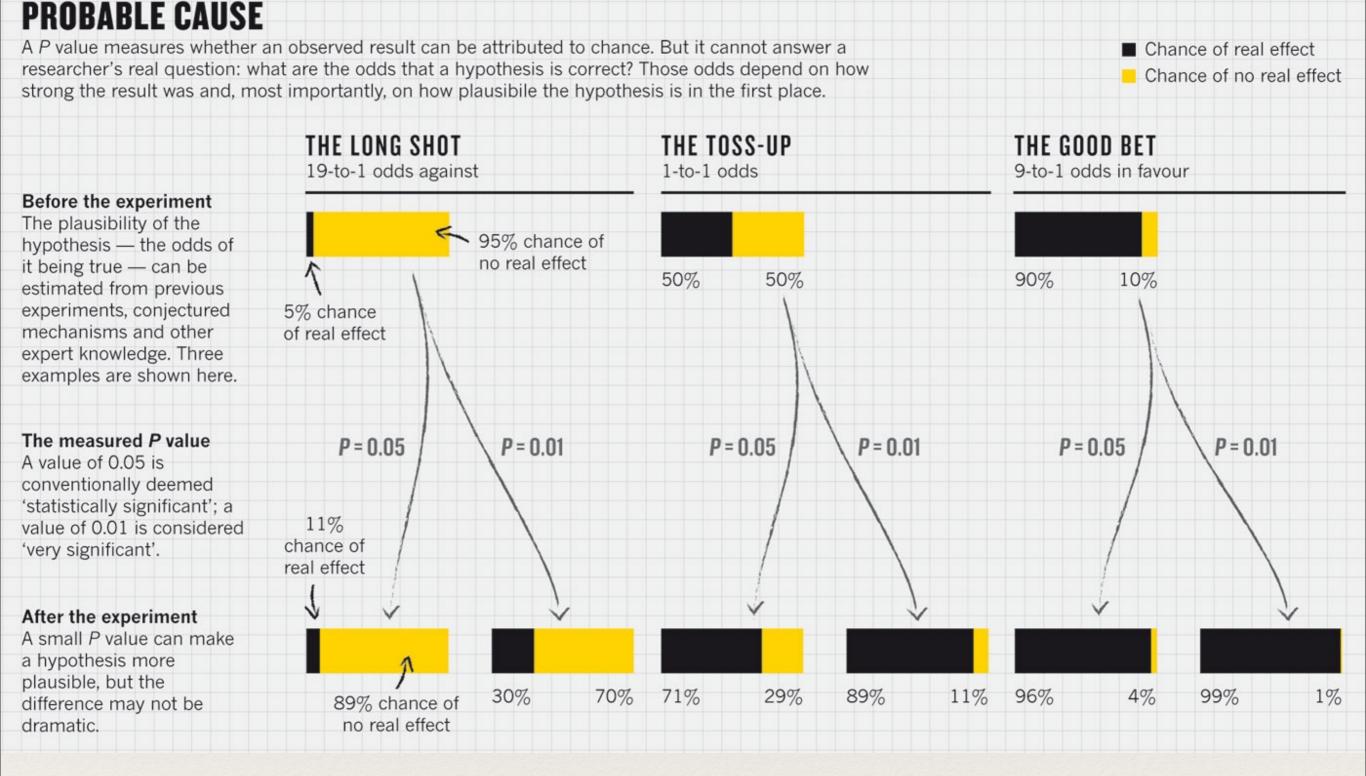
Hartung T.

Where the bias comes from - editors

- * Journal editors reject studies with negative results
- Studies with results not in concordance with previously published results are less likely to be accepted
- * or studies on "unsexy" topics
- Studies not from geographical interest of readers or in poor English are less likely to be published


Where the bias comes from- reviewers and funders

- Reviewers reject studies with negative results
- Reviewers reject studies not in concordance with their own published results
- Study sponsors (pharmaceutical companies) don't allow the publication of undesired results (no effect or negative effect)
- Researchers are evaluated and funded based on publications in high impact journals - pressure to publish a lot and in top journals (no place for negative results)


Bias in meta-analyses

- Publication bias
- Selection bias
 - Language bias
 - Location bias

Extreme example

P-value

Nuzzo, R. Nature 14.02.2014 "Statistical errors"

PLOS One, Nov 2014, issue 11

Publication bias in recent meta-analyses

Michal Kicinski

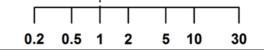
Purpose of the study

- Did statistically significant outcomes with positive effect of the treatment (clinical trials)
- or plausible statistically significant outcomes
 (observational studies) have a greater probability to be
 included in recent meta-analyses than other outcomes?

- Meta-analyses that included at least 30 effect sizes from individual studies
- Published between 2008 and 2012 in BMJ, JAMA, Lancet and PLOS Medicine

Methods

- Clinical trials: RR ratio of the probability of including statistically significant results favouring the treatment to the probability of including other results
- Observational studies: RR ratio of the probability of including plausible statistically significant results to the probability of including other results
- * They created a Bayesian selection model to describe the process of study selection.


Model testing on simulated data

- The estimate of RR gave a correct idea about the existence of a publication bias
- The RR tended to be underestimated when the mean effect size was small
- The RR tended to be overestimated when the mean effect size was large
- Compared to other methods the Bayesian model was more sensitive and specific

Results

- * 20 reports including 49 meta-analyses were used
- * 28 large meta-analyses of clinical trials
- * 19 large meta-analyses of observational studies

Reference	Investigated association	RR (95% CI)	RR (95% CI)	P(RR>1)
		1		
Bangalore, 2011	Angiotensin receptor blockers and myocardial infarction	╞┋╼┻──┤	2.41 (0.60-10.5)	0.881
Bangalore, 2011	Angiotensin receptor blockers and mortality	╞┋╌┛	2.30 (0.67-8.02)	0.901
Bangalore, 2011	Angiotensin receptor blockers and heart failure	╞┋═──┤	1.52 (0.54-5.65)	0.781
Beswick, 2008	Interventions to improve physical functioning and not living at home		2.37 (0.86-6.64)	0.950
Beswick, 2008	Interventions to improve physical functioning and risk of death		2.70 (1.04-6.46)	0.980
Beswick, 2008	Interventions to improve physical functioning and hospital admission	┠┋╋╌╌┤	1.48 (0.53-4.58)	0.779
Beswick, 2008	Interventions to improve physical functioning and physical function	╞┋═╌┤	1.51 (0.60-4.29)	0.809
Hempel, 2012	Probiotic use and antibiotic-associated diarrhea		3.94 (1.62-9.03)	0.999
Jalota, 2011	Adding lidocaine and the risk of pain on injection of propofol		13.4 (2.45-141)	0.999
Jalota, 2011	Pretreatment with lidocaine and the risk of pain on injection of propofol	$\square \vdash \blacksquare \rightarrow$	9.80 (2.21-61.5)	0.999
Ker, 2012	Tranexamic acid in surgery and the risk of blood transfusion	╞┋╼──┤	1.76 (0.66-5.84)	0.864
Law, 2009	Beta blockers and coronary heart disease		1.85 (0.78-5.16)	0.908
Law, 2009	Drugs other than beta blockers and coronary heart disease	╞╌┋╋╌╌┤	1.24 (0.58-2.73)	0.722
Law, 2009	Single drug blood pressure treatment and coronary heart disease	┠──■──┤	1.16 (0.54-2.57)	0.661
Law, 2009	Single drug blood pressure treatment and stroke		3.54 (1.17-11.1)	0.990
Law, 2009	Blood pressure decrease and coronary heart disease	┠──■┊┤	0.80 (0.33-1.60)	0.269
Law, 2009	Blood pressure decrease and stroke		3.56 (1.35-9.58)	0.995
Leucht, 2012	Antipsychotic drugs and relapse of schizophrenia up to three months	╞┋╋╌╌┤	1.87 (0.67-7.29)	0.875
Leucht, 2012	Antipsychotic drugs and relapse of schizophrenia four to six months		2.84 (0.96-10.5)	0.969
Leucht, 2012	Antipsychotic drugs and relapse of schizophrenia		3.67 (1.30-11.1)	0.994
Leucht, 2012	Antipsychotic drugs and leaving the study early due to any reason		2.94 (1.01-8.54)	0.977
Leucht, 2012	Antipsychotic drugs and leaving the study early due to inefficacy	┠──■──┤	1.25 (0.50-3.68)	0.691
Leucht, 2009	Risperidone vs 1st gen. drugs and overall symptoms of schizophrenia	┝─────┤	1.09 (0.33-3.50)	0.573
Leucht, 2009	Risperidone vs 1st gen. drugs and negative symptoms of schizophrenia	┝────┤	1.09 (0.34-3.44)	0.571
Tricco, 2012	Quality improvement strategies in diabetes and glycated hemoglobin		1.63 (0.88-3.09)	0.934
Tricco, 2012	Quality improvement strategies in diabetes and LDL	⊢]	0.29 (0.06-1.02)	0.028
Tricco, 2012	Quality improvement strategies in diabetes and systolic BP	┠┋╋╌┤	1.36 (0.62-3.30)	0.778
Tricco, 2012	Quality improvement strategies in diabetes and diastolic BP	- ∎ <u>-</u>	0.58 (0.18-1.38)	0.116

Reference	Investigated association	RR (95% CI)	RR (95% CI)	P(RR>1)
Botteri, 2008	Smoking and colorectal cancer incidence	╞┋╋┻╌╌┥	1.54 (0.64-4.52)	0.818
Botteri, 2008	Smoking and colorectal cancer mortality	∳	1.04 (0.39-2.77)	0.538
Brien, 2011	Alcohol consumption and high density lipoprotein cholesterol		1.19 (0.45-3.28)	0.657
Brien, 2011	Alcohol consumption and triglycerides	├	0.96 (0.24-2.83)	0.467
Clarke, 2012	C677T polymorphism of the MTHFR gene and coronary heart disease	╞╌┋═──┤	1.35 (0.59-3.01)	0.777
De Boer, 2009	Cancer survivors vs healthy people and unemployment	├──■ <u></u> <u></u>	0.89 (0.26-2.60)	0.401
Hemingway, 201	0 C-reactive protein level and cardiovascular events	$(\rightarrow \rightarrow$	14.4 (6.97-30.7)	1.000
Norman, 2012	Child physical abuse and anxiety		1.41 (0.65-3.36)	0.813
Norman, 2012	Child physical abuse and depressive disorders	(;	6.01 (1.92-18.1)	0.999
Norman, 2012	Child physical abuse and alcohol problem drinking		1.24 (0.46-3.87)	0.681
Norman, 2012	Child physical abuse and sexually transmitted infections/risky behavior		1.39 (0.53-4.20)	0.751
Norman, 2012	Child neglect and sexually transmitted infections/risky behavior	∎	0.74 (0.22-1.88)	0.258
Norman, 2012	Child neglect and drug use		1.26 (0.49-3.75)	0.693
Palomaki, 2010	9p21 single-nucleotide polymorphism (2 vs 1 at-risk allele) and heart dis	sease	2.68 (1.17-6.45)	0.990
Palomaki, 2010	9p21 single-nucleotide polymorphism (no vs 1 at-risk allele) and heart d	isease	2.29 (1.01-5.78)	0.977
Pan, 2011	Depression and stroke incidence	┠──┋■───┤	1.24 (0.47-3.81)	0.684
Renehan, 2008	BMI and postmenopausal breast cancer	╞┋╋╌╌┥	1.51 (0.59-4.64)	0.800
Ronksley, 2011	Alcohol consumption and coronary heart disease incidence	╞┋╼──┤	1.62 (0.66-4.51)	0.845
Ronksley, 2011	Alcohol consumption and coronary heart disease mortality	╞╌┋╋╌╌┤	1.48 (0.59-4.42)	0.799
Ronksley, 2011	Alcohol consumption and all-cause mortality	╞───╋──┤	0.89 (0.29-2.22)	0.385
Ziegelbauer, 201	2 Sanitation facilities and infection with soil-transmitted helminths	┠──┋╋───┤	1.25 (0.48-3.82)	0.684
	Г			
	0.2	2 0.5 1 2 5 10 3	0	

How to decrease publication bias?

- Prospective public registration of clinical trials (and observational studies) as a condition for publication and registration of trial results
- Publication of "negative results" (not statistically significant)