BI Journal Club 04.11.2013

Quality of computationally inferred gene ontology annotations

Škunca N, Altenhoff A, Dessimoz C PLoS Computational Biology, May 2012

Gene ontology

Controlled vocabulary to describe gene products in terms of associated:

- biological processes
- cellular components
- molecular functions

Gene ontology mapping and functional annotation of strawberry genes.

Nature Genetics 43, 109-116 (2011) doi:10.1038/ng.740

Increase in the number of manual GO annotations since 1999

Status of GO as of Sept. 2012

Biological process terms	23 907
Molecular function terms	9459
Cellular component terms	3050
Species with annotation (includes strains)	347 778
Total annotated gene products	96 602 850
Manually annotated gene products	358 319

Nucleic Acids Res. 2013 January; 41(D1): D530–D535.

UniProt GOA

- Manual annotation by curators using published literature. Each is given an evidence code that describes what evidence supports the annotation
- Electronic annotation use existing information within database entries which are manually mapped. Another mehthod uses orthology data from Ensembl Compara to project GO annotations from a source species onto one or more target species. Evidence code IEA

Experimental annotations

Experimental evidence codes (EXP)

IDA: Inferred from Direct Assay

IPI: Inferred from Physical Interaction

IMP: Inferred from Mutant Phenotype

IGI: Inferred from Genetic Interaction

IEP: Inferred from Expression Pattern

Curated non-experimental annotations

Computational analysis evidence codes

IGC: Inferred from

Genomic Context

IBA: Inferred from

IBD: Inferred from

IKR: Inferred from

IRD: Inferred from

Rapid Divergence

RCA: inferred from

Computational Analysis

Reviewed

Key Residues

Biological aspect of

Ancestor

Descendant

Biological aspect of

ISS: Inferred from Sequence or Structural Similarity

- ISO: Inferred from Sequence Orthology
- ISA: Inferred from Sequence Alignment
- ISM: Inferred from Sequence Model

Author statement evidence codes

NAS: Nontraceable Author Statement

TAS: Traceable Author Statement

Curator statement evidence codes

> IC: Inferred by Curator

ND: No biological Data available

Electronic annotations

Automatically-assigned evidence code (IEA)

> Inferred from Enzyme Commission

Inferred from InterPro

Inferred from UniProt-GOA

Inferred from UniProt-GOA (subcellular)

Inferred from Ensembl Compara

Inferred from HAMAP

Distribution of annotations

>98% of available GO annotations are electronic

Evaluation of electronic GO annotation quality

- * Analysed successive releases of UniProt-GOA
- Experimental annotations added in newer releases were used to confirm or reject earlier electronic annotations
- Only model organisms genomes were used in this analysis

Measures of quality

- reliability proportion of electronic annotations confirmed by experiments
- coverage power of electronic annotations to predict experimental annotations
- specificity how informative the predicted GO terms are

Measures of quality

Subsequent UniProt-GOA releases

- Molecular function terms had highest coverage
- Biological process terms had lowest coverage
 - Similar reliability
- General GO terms have higher reliability than specific terms.

Different model organisms

Homo sapiens Mus musculus Rattus norvegicus Caenorhabditis elegans Drosophila melanogaster Arabidopsis thaliana Gallus gallus Danio rerio Dictyostelium discoideum Saccharomyces cerevisiae Schizosaccharomyces pombe Escherichia coli K-12

2587071		249458		4499711	
01093	190362			2315622	
	1175	4			
89670	11/0	4		759486	
608747		234040		1117032	
72581	5 <mark>2</mark> 132			1722727	
1167 41634				1196215	
02036 31625				1364531	
9034 1 <mark>03</mark> 7	2			388982	
85346		420	994	500043	
96923		53490		383595	
0771	874			289468	
	0.2	0.4	0.6	0.8	1.

Biological process

Cellular component

Relicability

Coverage

Organisms with largest number of changes have the highest quality of annotation

Different sources of electronic annotation

GOA strategies based on comparative genomics are currently less reliable than approaches based on sequences features

Quality of electronic and curated annotations

Quality of curated non-experimental annotations

Electronic annotations are as reliable as curated non-experimental annotations

- Coverage of electronic annotations considerably larger
- Reliability of electronic annotations 0.52, reliability of curated non-experimental annotations 0.33
- If RCA annotations were excluded, the reliability of curated annotations 0.58

Conclusions

- Reliability and specificity of annotations has improved in recent years even despite the exponential growth of databases
- Most specialised sources of annotation are most reliable.
 UniProt Subcellular location and EC numbers.
- Strategies based on comparative genomics are least reliable.

Curators are not redundant as the best electronic annotations rely heavily on manually curated database entries