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Motivation 

 THE AIM: 

 Reconstructing genomes of microorganisms in a 
community directly from environmental 
samples. 

 Assembling and scaffolding Illumina sequencing 
data of microbial communities. 

 



Introduction – Isolate Genome Assembly 

 There are many isolate genome assemblers 

 Using de Brujin or overlap graphs 

 

 

 

 

 

 These assemblers cannot be directly applied to 
metagenome assembly 

 

 

De Brujin graphs Overlap graphs 
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Introduction – Isolate vs Metagenome 

 Assuming a uniform coverage depth across a genome 
 Identifying repeat regions 

 Estimating the size of a genome 

 In metagenome, genomes have different coverage depths 
depending on their relative abundance 

 Repeat regions in a single genome vs between multiple 
genomes 

 Sequencing errors 
 Introduce false overlaps 

 Disrupt true overlaps 

 Error correction using consesus sequence for isolate genomes 

 

 



Introduction – Metagenome Assembly  

 Some de Brujin graph assemblers have been upgraded 
for metagenomics 
 MetaVelvet 

 IDBA-UD 

 Omega – Overlap-graph MEtaGenome Assembler 

 Developed specifically for metagenome assembly 
 Using general overlap graph described in BOA and PEGASUS 

 Compared with SOAPdenovo, IDBA-UD, MetaVelvet, 
Celera 

 
 

 



Omega 

 Developed in C++  

 Developed using object-oriented programming 

 Accepts multiple input datasets 
 Different insert sizes 

 Different read lengths 

 Fasta or fastq 

 Source code and binaries available from 
http://omega.omicsbio.org 



Algorithm – Hash Table Construction (1) 

 All unique reads are loaded to the  
memory and indexed in a hash table 

 K – userdefined minimum overlap 

 Each read is assigned to the hash table with four keys: 
 Prefix of length K-1 

 Suffix of length K-1 

 Prefix of length K-1 of reverse complement 

 Suffix of length K-1 of reverse complement 

 The value in the hash table is an array of pointers to the 
reads associated with these keys 



Algorithm – Hash Table Construction (2) 

 Initialised as eight times of the total read number 

 Hash collision is resolved using linear probing 

 Nearly constant search time by prefix or suffix 

 

 Contained read – read that is a substring of another read 

 Used for: 
 Coverage depth calculation 

 Mate-pair linkage analysis 

 



Algorithm – Overlap Graph Construction (1) 

 Each read is represented by a vertex in a bi-directed 
overlap graph 

 Edge is inserted between vertices if the reads have an 
exact-match overlap of at least K bp 

 Bi-directed edges from overlaps: 
 Suffix with prefix  () 

 Suffix of the reverse complement with prefix () 

 Suffix with prefix of the reverse complement () 

 Suffix of the reverse complement with prefix of the reverse 
complement () 

 

 



Algorithm – Overlap Graph Construction (2) 

 Every substring of length K-1 of a read is searched 

 The reads are compared for their remaining overlap 

 Edge is created if there is exact match 

 All transitive edges are removed 
 Using linear algorithm as described in (Haider, 2012; Myeers, 2005) 

 



Algorithm – Composite Edge Contraction 

 Edges can be traversed in both directions 

 Vertices can be traversed if the in-going and out-going 
arrows have the same direction 
 () 

 () 

 A valid path in the graph represents an assembled DNA 
sequence 

 Simple vertices: exactly one in-arrow and one out-arrow 

 Merged into composite edges 



Algorithm – Sequence Variation Removal 

 Sequence variations 
 Uncorrected sequencing errors 

 Natural sequence polymorphisms 

 Do not overlap  
 Isolated vertices 

 Same sequence variations 
 Small branches (dead-end path with <10 reads) 

 Bubbles (two edges connecting the same two vertices with the 
same arrow types) 

 Removed 

 



Algorithm – Minimum Cost Flow Analysis (1) 

 String copy number to each edge 

 Represents how many times the sequence is present in 
the metagenome 

 Uses minimum cost flow analysis  
(Haider, 2012; Myers, 2005) 

 Composite edges with sequence >1000 bp – min flow 1 

 Shorter edges – min flow 0 



Algorithm – Minimum Cost Flow Analysis (2) 

 CS2 algorithm for optimizing the total cost of the flow 
network in the overlap graph 

 Flow > 1 – repeat regions 

 Flow = 0 – short sequences  
(ignored) 

 Simplifying tree structures 

 



Algorithm – Merging Adjacent Edges 

 Estimating insert size of each paired-end dataset 

 Mate-pairs in long edges are used to estimate mean and 
standard deviation of insert size 

 Mate-pairs from different edges are used to merge them 
 Finding paths within range ( - 3,  + 3) 

 All paths of more than three mate-pairs have to travel through the 
same two edges 

 



Algorithm – Scaffolding Long Edges 

 Mate-pairs that have no valid path between reads 

 Attempted for every pair of non-adjacent edges with  
>1000 bp 

 Uniquely mapped to two edges with appropritate distance 

 More than three mate-pairs have to support the edges 



Algorithm – Resolving ambiguity 

 Vertices with two in-coming and out-going edges 

 Short repeat region between two genomes 

 Coverage depth is calculated using unique reads 

 Mean  and SD  of coverage depth are estimated 

 Adjacent edges are merged if | 1 -  2 | <  1 +  2 



Algorithm  

 Reporting contigs and scaffolds based on the edges of the 
overlap graph 



Data 

 Illumina HiSeq 100-bp reads 

 Real-world sequencing dataset 

 Genomic DNA mixture of 64 diverse bacterial and 
archaeal microorganisms 

 108.7 million paired-end + 0.4 million single-end reads 

 

 Illumina MiSeq 300-bp reads 

 Simulated dataset 

 Nine-genome synthetic community 

 10 million paired-end reads (avg insert size 900 bp) 

 



Methods – 100 bp 

 SOAPdenovo 
 Best k-mer length 51 

 Configuration described (Pop, 2011) 

 IDBA-UD 
 K-mer length range 30-60, step size 10 

 MetaVelvet 
 Best k-mer length 51 

 Omega 
 Best minimum overlap length 50 

 



Methods – 300 bp 

 SOAPdenovo 
 Best k-mer length 121 

 IDBA-UD 
 K-mer length range 40-120, step size 20 

 MetaVelvet 
 Best k-mer length 151 

 (Maximum k-mer length changed to 171) 

 Omega 
 Best minimum overlap length 150 

 Celera 
 Default setting 

 



Methods – Comparison 

 Contigs and scaffolds >200 bp were aligned to reference 

 List of correct contigs (<5% substitutions and indels) 

 Scaffolding was correct if: 
 Contigs were in correct orientation 

 Apart by less than mean + 1 SD of the mate inner distances 

 Performance of the methods was compared by: 
 Genome sequence coverage for each reference 

 Largest contig length 

 N80, N50, N20 

 

 

 



Results – 100 bp, Data 

 Trimming, filtering   101 million paired-end reads 

 Aligned to references using Bowtie2 
 Up to three mismatches per read 

 Sequencing errors – mismatches supported by less than 
three reads 

 Before error correction:  
93.8 million reads aligned, 0.12 sequencing error per read 

 After error correction: 
 97.5 million reads aligned, 0.02 sequencing error per read 

 



Results – 100 bp, CPU and Memory (1) 

Method CPU usage Peak memory usage 

SOAPdenovo 13 h 29 GB 

IDBA-UD 49 h 112 GB 

MetaVelvet 8 h 21 GB 

Omega 15 h  105 GB 



Results – 100 bp, CPU & Memory (2) 

 Omega: 
 1.5 h – building hash table 

 2.7 h – indentifying contained reads 

 7.1 h – constructing the overlap graph 

 3.5 h - simplifying the graph 

 Peak memory usage:  
 At the end of overlap graph construction 

 Reads (50 GB) + hash table (5 GB) + overlap graph (50 GB) 

 



Results – 100 bp (1) 



Results – 100 bp (2) 



Results – 300 bp 



Discussion 

 Computationally simulated data cannot reproduce many 
complications of Illumina sequencing 

 Omega was comparable on 100 bp dataset 

 Omega was superior on 300 bp dataset 

 Suitable for different data: 
 Omega – long reads, high coverage 

 MetaVelvet, SOAPdenovo – efficient in memory and CPU usage 

 IDBA-UD – better assembly for more genomes and shorter reads 

 Celera – good for long reads  

 



Summary 

 Overlap graph is effective 

 More useful for future Illumina technologies with longer 
reads and higher throughput 

 



Thank you for your attention! 


