
Fa n n y - D h e l i a P a j u s t e

J C 0 3 . 1 2 . 2 0 1 4

Omega: an Overlap-graph de novo
Assembler for Metagenomics

B a h l e l H a i d e r, Ta e - H y u k A h n , B r i a n B u s h n e l l ,
J u a n j u a n C h a i , A l e x C o p e l a n d , C h o n g l e P a n

B i o i n fo rma t i c s , v o l . 3 0 n o . 1 9 2 0 1 4

P a g e s 2 7 1 7 - 2 7 2 2

Motivation

 THE AIM:

 Reconstructing genomes of microorganisms in a
community directly from environmental
samples.

 Assembling and scaffolding Illumina sequencing
data of microbial communities.

Introduction – Isolate Genome Assembly

 There are many isolate genome assemblers

 Using de Brujin or overlap graphs

 These assemblers cannot be directly applied to
metagenome assembly

De Brujin graphs Overlap graphs

ABySS SGA

IDBA PEGASUS

ALLPATH

Velvet

SOAPdenovo

Introduction – Isolate vs Metagenome

 Assuming a uniform coverage depth across a genome
 Identifying repeat regions

 Estimating the size of a genome

 In metagenome, genomes have different coverage depths
depending on their relative abundance

 Repeat regions in a single genome vs between multiple
genomes

 Sequencing errors
 Introduce false overlaps

 Disrupt true overlaps

 Error correction using consesus sequence for isolate genomes

Introduction – Metagenome Assembly

 Some de Brujin graph assemblers have been upgraded
for metagenomics
 MetaVelvet

 IDBA-UD

 Omega – Overlap-graph MEtaGenome Assembler

 Developed specifically for metagenome assembly
 Using general overlap graph described in BOA and PEGASUS

 Compared with SOAPdenovo, IDBA-UD, MetaVelvet,
Celera

Omega

 Developed in C++

 Developed using object-oriented programming

 Accepts multiple input datasets
 Different insert sizes

 Different read lengths

 Fasta or fastq

 Source code and binaries available from
http://omega.omicsbio.org

Algorithm – Hash Table Construction (1)

 All unique reads are loaded to the
memory and indexed in a hash table

 K – userdefined minimum overlap

 Each read is assigned to the hash table with four keys:
 Prefix of length K-1

 Suffix of length K-1

 Prefix of length K-1 of reverse complement

 Suffix of length K-1 of reverse complement

 The value in the hash table is an array of pointers to the
reads associated with these keys

Algorithm – Hash Table Construction (2)

 Initialised as eight times of the total read number

 Hash collision is resolved using linear probing

 Nearly constant search time by prefix or suffix

 Contained read – read that is a substring of another read

 Used for:
 Coverage depth calculation

 Mate-pair linkage analysis

Algorithm – Overlap Graph Construction (1)

 Each read is represented by a vertex in a bi-directed
overlap graph

 Edge is inserted between vertices if the reads have an
exact-match overlap of at least K bp

 Bi-directed edges from overlaps:
 Suffix with prefix ()

 Suffix of the reverse complement with prefix ()

 Suffix with prefix of the reverse complement ()

 Suffix of the reverse complement with prefix of the reverse
complement ()

Algorithm – Overlap Graph Construction (2)

 Every substring of length K-1 of a read is searched

 The reads are compared for their remaining overlap

 Edge is created if there is exact match

 All transitive edges are removed
 Using linear algorithm as described in (Haider, 2012; Myeers, 2005)

Algorithm – Composite Edge Contraction

 Edges can be traversed in both directions

 Vertices can be traversed if the in-going and out-going
arrows have the same direction
 ()

 ()

 A valid path in the graph represents an assembled DNA
sequence

 Simple vertices: exactly one in-arrow and one out-arrow

 Merged into composite edges

Algorithm – Sequence Variation Removal

 Sequence variations
 Uncorrected sequencing errors

 Natural sequence polymorphisms

 Do not overlap
 Isolated vertices

 Same sequence variations
 Small branches (dead-end path with <10 reads)

 Bubbles (two edges connecting the same two vertices with the
same arrow types)

 Removed

Algorithm – Minimum Cost Flow Analysis (1)

 String copy number to each edge

 Represents how many times the sequence is present in
the metagenome

 Uses minimum cost flow analysis
(Haider, 2012; Myers, 2005)

 Composite edges with sequence >1000 bp – min flow 1

 Shorter edges – min flow 0

Algorithm – Minimum Cost Flow Analysis (2)

 CS2 algorithm for optimizing the total cost of the flow
network in the overlap graph

 Flow > 1 – repeat regions

 Flow = 0 – short sequences
(ignored)

 Simplifying tree structures

Algorithm – Merging Adjacent Edges

 Estimating insert size of each paired-end dataset

 Mate-pairs in long edges are used to estimate mean and
standard deviation of insert size

 Mate-pairs from different edges are used to merge them
 Finding paths within range ( - 3,  + 3)

 All paths of more than three mate-pairs have to travel through the
same two edges

Algorithm – Scaffolding Long Edges

 Mate-pairs that have no valid path between reads

 Attempted for every pair of non-adjacent edges with
>1000 bp

 Uniquely mapped to two edges with appropritate distance

 More than three mate-pairs have to support the edges

Algorithm – Resolving ambiguity

 Vertices with two in-coming and out-going edges

 Short repeat region between two genomes

 Coverage depth is calculated using unique reads

 Mean  and SD  of coverage depth are estimated

 Adjacent edges are merged if | 1 -  2 | <  1 +  2

Algorithm

 Reporting contigs and scaffolds based on the edges of the
overlap graph

Data

 Illumina HiSeq 100-bp reads

 Real-world sequencing dataset

 Genomic DNA mixture of 64 diverse bacterial and
archaeal microorganisms

 108.7 million paired-end + 0.4 million single-end reads

 Illumina MiSeq 300-bp reads

 Simulated dataset

 Nine-genome synthetic community

 10 million paired-end reads (avg insert size 900 bp)

Methods – 100 bp

 SOAPdenovo
 Best k-mer length 51

 Configuration described (Pop, 2011)

 IDBA-UD
 K-mer length range 30-60, step size 10

 MetaVelvet
 Best k-mer length 51

 Omega
 Best minimum overlap length 50

Methods – 300 bp

 SOAPdenovo
 Best k-mer length 121

 IDBA-UD
 K-mer length range 40-120, step size 20

 MetaVelvet
 Best k-mer length 151

 (Maximum k-mer length changed to 171)

 Omega
 Best minimum overlap length 150

 Celera
 Default setting

Methods – Comparison

 Contigs and scaffolds >200 bp were aligned to reference

 List of correct contigs (<5% substitutions and indels)

 Scaffolding was correct if:
 Contigs were in correct orientation

 Apart by less than mean + 1 SD of the mate inner distances

 Performance of the methods was compared by:
 Genome sequence coverage for each reference

 Largest contig length

 N80, N50, N20

Results – 100 bp, Data

 Trimming, filtering  101 million paired-end reads

 Aligned to references using Bowtie2
 Up to three mismatches per read

 Sequencing errors – mismatches supported by less than
three reads

 Before error correction:
93.8 million reads aligned, 0.12 sequencing error per read

 After error correction:
 97.5 million reads aligned, 0.02 sequencing error per read

Results – 100 bp, CPU and Memory (1)

Method CPU usage Peak memory usage

SOAPdenovo 13 h 29 GB

IDBA-UD 49 h 112 GB

MetaVelvet 8 h 21 GB

Omega 15 h 105 GB

Results – 100 bp, CPU & Memory (2)

 Omega:
 1.5 h – building hash table

 2.7 h – indentifying contained reads

 7.1 h – constructing the overlap graph

 3.5 h - simplifying the graph

 Peak memory usage:
 At the end of overlap graph construction

 Reads (50 GB) + hash table (5 GB) + overlap graph (50 GB)

Results – 100 bp (1)

Results – 100 bp (2)

Results – 300 bp

Discussion

 Computationally simulated data cannot reproduce many
complications of Illumina sequencing

 Omega was comparable on 100 bp dataset

 Omega was superior on 300 bp dataset

 Suitable for different data:
 Omega – long reads, high coverage

 MetaVelvet, SOAPdenovo – efficient in memory and CPU usage

 IDBA-UD – better assembly for more genomes and shorter reads

 Celera – good for long reads

Summary

 Overlap graph is effective

 More useful for future Illumina technologies with longer
reads and higher throughput

Thank you for your attention!

