Omega: an Overlap-graph de novo
Assembler for Metagenomics

O

Motivation

THE AlIM:

Reconstructing genomes of microorganisms in a
community directly from environmental

samples.

Assembling and scaffolding lllumina sequencing
data of microbial communities.

Introduction — Isolate Genome Assembly

* There are many isolate genome assemblers
* Using de Brujin or overlap graphs

De Brujin graphs Overlap graphs
ABySS SGA
IDBA PEGASUS

ALLPATH
Velvet
SOAPdenovo

e These assemblers cannot be directly applied to
metagenome assembly

Introduction — Isolate vs Metagenome

e Assuming a uniform coverage depth across a genome
|dentifying repeat regions
Estimating the size of a genome

In metagenome, genomes have different coverage depths
depending on their relative abundance

e Repeat regions in a single genome vs between multiple
genomes

e Segquencing errors
Introduce false overlaps
Disrupt true overlaps
Error correction using consesus sequence for isolate genomes

Introduction — Metagenome Assembly

e Some de Brujin graph assemblers have been upgraded
for metagenomics

MetaVelvet
IDBA-UD

e Omega — Overlap-graph MIEtaGenome Assembler

e Developed specifically for metagenome assembly
Using general overlap graph described in BOA and PEGASUS

e Compared with SOAPdenovo, IDBA-UD, MetaVelvet,
Celera

Omega

e Developed in C++
* Developed using object-oriented programming
e Accepts multiple input datasets

Different insert sizes
Different read lengths
Fasta or fastqg

e Source code and binaries available from
http://omega.omicsbio.org

Algorithm — Hash Table Construction (1)

All unigue reads are loaded to the Input Reads Hash Table
memory and indexed in a hash table

. —> ; ZZZZZEZZ:ZZ

e K —userdefined minimum overlap

e Each read is assigned to the hash table with four keys:

Prefix of length K-1
Suffix of length K-1
Prefix of length K-1 of reverse complement
Suffix of length K-1 of reverse complement

e The value in the hash table is an array of pointers to the
reads associated with these keys

Algorithm — Hash Table Construction (2)

e |nitialised as eight times of the total read number
e Hash collision is resolved using linear probing
e Nearly constant search time by prefix or suffix

e Contained read — read that is a substring of another read
e Used for:

Coverage depth calculation
Mate-pair linkage analysis

Algorithm — Overlap Graph Construction (1)

e Each read is represented by a vertex in a bi-directed
overlap graph

e Edge is inserted between vertices if the reads have an
exact-match overlap of at least K bp

* Bi-directed edges from overlaps:
Suffix with prefix (e—>——e)
Suffix of the reverse complement with prefix (e<———e)
Suffix with prefix of the reverse complement (e—>—<«—e)

Suffix of the reverse complement with prefix of the reverse
complement (e<——<—e)

Algorithm — Overlap Graph Construction (2)

e Every substring of length K-1 of a read is searched
e The reads are compared for their remaining overlap
* Edge is created if there is exact match

e All transitive edges are removed
Using linear algorithm as described in (Haider, 2012; Myeers, 2005)

Hash Table Read Alignment

=[] =

Algorithm — Composite Edge Contraction

e Edges can be traversed in both directions

* Vertices can be traversed if the in-going and out-going
arrows have the same direction

(—e—>—)
(<o)

e A valid path in the graph represents an assembled DNA
sequence

e Simple vertices: exactly one in-arrow and one out-arrow
* Merged into composite edges

Algorithm — Sequence Variation Removal

e Sequence variations
Uncorrected sequencing errors
Natural sequence polymorphisms

e Do not overlap
Isolated vertices

e Same sequence variations
Small branches (dead-end path with <10 reads)

Bubbles (two edges connecting the same two vertices with the
same arrow types)

e Removed

Algorithm — Minimum Cost Flow Analysis (1)

e String copy number to each edge

e Represents how many times the sequence is present in
the metagenome

e Uses minimum cost flow analysis
(Haider, 2012; Myers, 2005)

e Composite edges with sequence >1000 bp — min flow 1
e Shorter edges — min flow 0

Algorithm — Minimum Cost Flow Analysis (2)

e CS2 algorithm for optimizing the total cost of the flow

network in the overlap graph _
Read Alighment

e Flow > 1 —repeat regions —
e Flow = 0 — short sequences _%___

(ignored) @
e Simplifying tree structures
Unitig Graph

Algorithm — Merging Adjacent Edges

e Estimating insert size of each paired-end dataset

e Mate-pairs in long edges are used to estimate mean and
standard deviation of insert size

* Mate-pairs from different edges are used to merge them
Finding paths within range (i1 - 3o, u + 30)

All paths of more than three mate-pairs have to travel through the

same two edges Unitig Graph

Algorithm — Scaffolding Long Edges

e Mate-pairs that have no valid path between reads

o Attempted for every pair of non-adjacent edges with
>1000 bp

e Uniquely mapped to two edges with appropritate distance
* More than three mate-pairs have to support the edges

Unitig Graph
Contig Graph

............ i o ®
N P ST .1\. 2 &1 Fowe
G OWS
- [

Algorithm — Resolving ambiguity

e Vertices with two in-coming and out-going edges
e Short repeat region between two genomes

e Coverage depth is calculated using unique reads

e Mean 0 and SD O of coverage depth are estimated
e Adjacent edges are merged if | 0,-0,]<0,+60,

Algorithm

O

* Reporting contigs and scaffolds based on the edges of the
overlap graph

Input Reads Hash Table Read Alignment

— — || _%aiitiveedges
— = | | =

Unitig Graph

Contig Graph

w ,,.1_,,. o——o
1 1 N, 2 1 !
1

Flows

Data

* |llumina HiSeq 100-bp reads
e Real-world sequencing dataset

e Genomic DNA mixture of 64 diverse bacterial and
archaeal microorganisms

e 108.7 million paired-end + 0.4 million single-end reads

* |[lumina MiSeq 300-bp reads

e Simulated dataset

* Nine-genome synthetic community

* 10 million paired-end reads (avg insert size 900 bp)

Methods — 100 bp

e SOAPdenovo

Best k-mer length 51
Configuration described (Pop, 2011)

e IDBA-UD
K-mer length range 30-60, step size 10

e MetaVelvet
Best k-mer length 51

* Omega

Best minimum overlap length 50

Methods — 300 bp

e SOAPdenovo
Best k-mer length 121

e IDBA-UD
K-mer length range 40-120, step size 20

e MetaVelvet

Best k-mer length 151
(Maximum k-mer length changed to 171)

* Omega
Best minimum overlap length 150

e Celera
Default setting

Methods — Comparison

e Contigs and scaffolds >200 bp were aligned to reference
e List of correct contigs (<5% substitutions and indels)
e Scaffolding was correct if:

Contigs were in correct orientation

Apart by less than mean + 1 SD of the mate inner distances
e Performance of the methods was compared by:
Genome sequence coverage for each reference

Largest contig length
N80, N50, N20

Results — 100 bp, Data

e Trimming, filtering — 101 million paired-end reads
e Aligned to references using Bowtie2

Up to three mismatches per read

e Sequencing errors — mismatches supported by less than
three reads

» Before error correction:
93.8 million reads aligned, 0.12 sequencing error per read

o After error correction:
97.5 million reads aligned, 0.02 sequencing error per read

Results — 100 bp, CPU and Memory (1)

Method CPU usage Peak memory usage
SOAPdenovo 13 h 29 GB
IDBA-UD 49 h 112 GB
MetaVelvet 8h 21 GB

Omega 15h 105 GB

Results — 100 bp, CPU & Memory (2)
O

e Omega:
O 1.5 h — building hash table
O 2.7 h —indentifying contained reads
O 7.1 h —constructing the overlap graph
O 3.5 h - simplifying the graph

e Peak memory usage:

O At the end of overlap graph construction
O Reads (50 GB) + hash table (5 GB) + overlap graph (50 GB)

Results — 100 bp (1)
O

Table 1. Average genome assembly statistics across all genomes in the

HiSeq 100-bp dataset

Assembler N80 N30 N20 Largest Coverage
(10°bp) (10°bp) (10°bp) Contig (%)
(10°bp)

SOAPdenovo 33 73 144 92.81
MetaVelvet 46 92 147 82.10
Omega 61 111 174 94.50
IDBA_UD 70 136 203 95.65

Results — 100 bp (2)

| o 3 (70 £ gEn O DO D aE (M D 0 G [(e (M) 20 153 Qoo [e o)) SN 1o Q) B) D [0 00 o) (B OSX: 00) |

1011 uuuuunuinozuznunnznnuonsnaauuunuua«au«uuuuununuuuununnuunsu
Genome Index

-A
]
v
>
-
.
-
-
e

£3 SOAPdenovo £ IDBA.UD €5 MetaVeivet @ Omega

1: Acidobacterium capsulatum ATCC 51196 17: Deinococcus radiodurans R1 33: Methanopyrus kandleri AV19 49: Salinispora tropica CNB 440

2: boonei T469 18: Desulfovibrio piger ATCC 29098 34: Methanosarcina acetivorans C2A 50: Shewanella baitica 05185

3: Akkermansia muciniphila ATCC BAA 835 19: Desulfovibrio vulgaris DP4 35: Nanoarchaeum 51: Shewanella boltica 05223

4: Archaeoglobus : Dictyoglomus turgidum 6724 36: Nitrosomonas europaea ATCC 19718 52: Si EE

5: Bacteroides 21: Enterococcus faecalis OG! 37: Nostoc PCC 7120 Sulfitobacter NAS 14 1

Bacteroides vulgatus ATCC 8482 : Fusobacterium nucleatum ATCC 25586 38: y BU1 54:

7: Bordetella : Gemmatimonas ourantiaca T 2 39: Persephonella marina EX H1 S$55
xenovorans : Geobacter sulfurreducens : Porphyromonas gingivalis ATCC 33277 56: Sulfurihydrogenibium

9: Caldicellulosiruptor bescii DSM 6725 25: Haloferax volcanii 1: Pyrobaculum aerophilum IM. 7: Thermoanaerobacter pseudethanolicus ATCC 33223

10: Caldi DSM 8903 26: DSM 785 42: Pyrobaculum arsenaticum DSM 13514 58: neapolitana DSM 43!

11: Chlorobium limicola DSM 245 27: Hydrogenobaculum YO4AAS: : Pyrobaculum calidifontis 59: Thermotoga petrophila RKU 1
phoeobacteroides DSM 266 28: Ignicoccus hospitalis KINA | 44: Pyrococcus furlosus DSM 3638 Thermotoga

13: Chiorobium DSM 265 29: Leptothrix cholodnii SP 6 : Pyrococcus 61: Thermus

14: Chiorobium E DSM 2661 46: Rhodopirellula baltica SH 1 denticola ATCC 35405

15: Chiorofiexus aurantiacus J 10 fl 31: Methanococcus maripaludis C5 47: Ruegeria pomeroyi DSS 3 63: Wolinella succinogenes DSM 1740

16: Clostridium thermocellum ATCC 27405 32: Methanococcus maripaludis 2 48: Salinispora arenicola CNS 205 64: Zymomonas mobilis ZM4

Fig. 2. Scaffold assembly statistics for individual genomes from the HiSeq 100-bp dataset. The x-axis lists the 64 genomes in alphabetic order, and the
indices and organism names of the genomes are shown in the legend. The assemblies were provided by SOAPdenovo (blue squares), IDBA-UD (green
triangles), MetaVelvet (black diamonds) and Omega (solid red circles). Outliers below the minimum threshold of a performance statistics are not shown

Results — 300 bp
O

Table 2. Comparison of overall assembly statistics on the MiSeq 300-bp dataset*

Assembly Statistics Assembler Total N30 N80 N30 N20 Largest Sum Coverage
contigs contigs (10°bp) (10°bp) (10°bp) contig (10°bp) (10°bp) (%)

Contigs Raw SOAPdenovo T815 36l 8 20 51 358 29 -
IDBA_UD 1683 72 38 102 217 965 29 -
MetaVelvet 1097 52 48 136 340 1389 29 -
Celera 435 48 53 151 483 1406 29 -
Omega 537 40 64 159 490 2572 29 -
Verified SOAPdenovo 7817 361 8 20 51 358 29 97.95
IDBA_UD 1775 79 36 95 199 547 29 97.73
MetaVelvet 1104 54 46 135 313 1389 29 98.06
Celera 448 48 52 151 483 1406 29 99.16
Omega 578 43 55 158 486 2091 29 99.05
Scaffolds Raw SOAPdenovo 5586 50 45 138 379 1404 30 -
IDBA_UD 1570 63 40 116 302 965 29 -
MetaVelvet 996 44 51 156 489 1389 29 -
Celera 429 48 53 151 483 1406 29 -
Omega 434 36 67 188 556 2572 29 -
Verified SOAPdenovo 6926 160 11 38 149 593 29 95.11
IDBA_UD 1733 75 37 100 213 547 29 97.84
MetaVelvet 1065 50 48 138 479 1389 29 98.03
Celera 450 48 52 151 483 1406 29 99.16
Omega 562 42 55 160 486 2091 29 99.02

*Best assembly statistics in each category is highlighted in bold.

Discussion

e Computationally simulated data cannot reproduce many
complications of lllumina sequencing

* Omega was comparable on 100 bp dataset
* Omega was superior on 300 bp dataset
e Suitable for different data:

Omega — long reads, high coverage
MetaVelvet, SOAPdenovo — efficient in memory and CPU usage

IDBA-UD — better assembly for more genomes and shorter reads
Celera — good for long reads

Summary

e Overlap graph is effective

* More useful for future lllumina technologies with longer
reads and higher throughput

Thank you for your attention!

O

