
Fa n n y - D h e l i a  P a j u s t e  

J C  0 3 . 1 2 . 2 0 1 4  

Omega: an Overlap-graph de novo 
Assembler for Metagenomics 

B a h l e l  H a i d e r,  Ta e - H y u k  A h n ,  B r i a n  B u s h n e l l ,  
J u a n j u a n  C h a i ,  A l e x  C o p e l a n d ,  C h o n g l e  P a n  

 

B i o i n fo rma t i c s ,  v o l . 3 0  n o . 1 9  2 0 1 4  

P a g e s  2 7 1 7 - 2 7 2 2  



Motivation 

 THE AIM: 

 Reconstructing genomes of microorganisms in a 
community directly from environmental 
samples. 

 Assembling and scaffolding Illumina sequencing 
data of microbial communities. 

 



Introduction – Isolate Genome Assembly 

 There are many isolate genome assemblers 

 Using de Brujin or overlap graphs 

 

 

 

 

 

 These assemblers cannot be directly applied to 
metagenome assembly 

 

 

De Brujin graphs Overlap graphs 

ABySS SGA 

IDBA PEGASUS 

ALLPATH 

Velvet 

SOAPdenovo 



Introduction – Isolate vs Metagenome 

 Assuming a uniform coverage depth across a genome 
 Identifying repeat regions 

 Estimating the size of a genome 

 In metagenome, genomes have different coverage depths 
depending on their relative abundance 

 Repeat regions in a single genome vs between multiple 
genomes 

 Sequencing errors 
 Introduce false overlaps 

 Disrupt true overlaps 

 Error correction using consesus sequence for isolate genomes 

 

 



Introduction – Metagenome Assembly  

 Some de Brujin graph assemblers have been upgraded 
for metagenomics 
 MetaVelvet 

 IDBA-UD 

 Omega – Overlap-graph MEtaGenome Assembler 

 Developed specifically for metagenome assembly 
 Using general overlap graph described in BOA and PEGASUS 

 Compared with SOAPdenovo, IDBA-UD, MetaVelvet, 
Celera 

 
 

 



Omega 

 Developed in C++  

 Developed using object-oriented programming 

 Accepts multiple input datasets 
 Different insert sizes 

 Different read lengths 

 Fasta or fastq 

 Source code and binaries available from 
http://omega.omicsbio.org 



Algorithm – Hash Table Construction (1) 

 All unique reads are loaded to the  
memory and indexed in a hash table 

 K – userdefined minimum overlap 

 Each read is assigned to the hash table with four keys: 
 Prefix of length K-1 

 Suffix of length K-1 

 Prefix of length K-1 of reverse complement 

 Suffix of length K-1 of reverse complement 

 The value in the hash table is an array of pointers to the 
reads associated with these keys 



Algorithm – Hash Table Construction (2) 

 Initialised as eight times of the total read number 

 Hash collision is resolved using linear probing 

 Nearly constant search time by prefix or suffix 

 

 Contained read – read that is a substring of another read 

 Used for: 
 Coverage depth calculation 

 Mate-pair linkage analysis 

 



Algorithm – Overlap Graph Construction (1) 

 Each read is represented by a vertex in a bi-directed 
overlap graph 

 Edge is inserted between vertices if the reads have an 
exact-match overlap of at least K bp 

 Bi-directed edges from overlaps: 
 Suffix with prefix  () 

 Suffix of the reverse complement with prefix () 

 Suffix with prefix of the reverse complement () 

 Suffix of the reverse complement with prefix of the reverse 
complement () 

 

 



Algorithm – Overlap Graph Construction (2) 

 Every substring of length K-1 of a read is searched 

 The reads are compared for their remaining overlap 

 Edge is created if there is exact match 

 All transitive edges are removed 
 Using linear algorithm as described in (Haider, 2012; Myeers, 2005) 

 



Algorithm – Composite Edge Contraction 

 Edges can be traversed in both directions 

 Vertices can be traversed if the in-going and out-going 
arrows have the same direction 
 () 

 () 

 A valid path in the graph represents an assembled DNA 
sequence 

 Simple vertices: exactly one in-arrow and one out-arrow 

 Merged into composite edges 



Algorithm – Sequence Variation Removal 

 Sequence variations 
 Uncorrected sequencing errors 

 Natural sequence polymorphisms 

 Do not overlap  
 Isolated vertices 

 Same sequence variations 
 Small branches (dead-end path with <10 reads) 

 Bubbles (two edges connecting the same two vertices with the 
same arrow types) 

 Removed 

 



Algorithm – Minimum Cost Flow Analysis (1) 

 String copy number to each edge 

 Represents how many times the sequence is present in 
the metagenome 

 Uses minimum cost flow analysis  
(Haider, 2012; Myers, 2005) 

 Composite edges with sequence >1000 bp – min flow 1 

 Shorter edges – min flow 0 



Algorithm – Minimum Cost Flow Analysis (2) 

 CS2 algorithm for optimizing the total cost of the flow 
network in the overlap graph 

 Flow > 1 – repeat regions 

 Flow = 0 – short sequences  
(ignored) 

 Simplifying tree structures 

 



Algorithm – Merging Adjacent Edges 

 Estimating insert size of each paired-end dataset 

 Mate-pairs in long edges are used to estimate mean and 
standard deviation of insert size 

 Mate-pairs from different edges are used to merge them 
 Finding paths within range ( - 3,  + 3) 

 All paths of more than three mate-pairs have to travel through the 
same two edges 

 



Algorithm – Scaffolding Long Edges 

 Mate-pairs that have no valid path between reads 

 Attempted for every pair of non-adjacent edges with  
>1000 bp 

 Uniquely mapped to two edges with appropritate distance 

 More than three mate-pairs have to support the edges 



Algorithm – Resolving ambiguity 

 Vertices with two in-coming and out-going edges 

 Short repeat region between two genomes 

 Coverage depth is calculated using unique reads 

 Mean  and SD  of coverage depth are estimated 

 Adjacent edges are merged if | 1 -  2 | <  1 +  2 



Algorithm  

 Reporting contigs and scaffolds based on the edges of the 
overlap graph 



Data 

 Illumina HiSeq 100-bp reads 

 Real-world sequencing dataset 

 Genomic DNA mixture of 64 diverse bacterial and 
archaeal microorganisms 

 108.7 million paired-end + 0.4 million single-end reads 

 

 Illumina MiSeq 300-bp reads 

 Simulated dataset 

 Nine-genome synthetic community 

 10 million paired-end reads (avg insert size 900 bp) 

 



Methods – 100 bp 

 SOAPdenovo 
 Best k-mer length 51 

 Configuration described (Pop, 2011) 

 IDBA-UD 
 K-mer length range 30-60, step size 10 

 MetaVelvet 
 Best k-mer length 51 

 Omega 
 Best minimum overlap length 50 

 



Methods – 300 bp 

 SOAPdenovo 
 Best k-mer length 121 

 IDBA-UD 
 K-mer length range 40-120, step size 20 

 MetaVelvet 
 Best k-mer length 151 

 (Maximum k-mer length changed to 171) 

 Omega 
 Best minimum overlap length 150 

 Celera 
 Default setting 

 



Methods – Comparison 

 Contigs and scaffolds >200 bp were aligned to reference 

 List of correct contigs (<5% substitutions and indels) 

 Scaffolding was correct if: 
 Contigs were in correct orientation 

 Apart by less than mean + 1 SD of the mate inner distances 

 Performance of the methods was compared by: 
 Genome sequence coverage for each reference 

 Largest contig length 

 N80, N50, N20 

 

 

 



Results – 100 bp, Data 

 Trimming, filtering   101 million paired-end reads 

 Aligned to references using Bowtie2 
 Up to three mismatches per read 

 Sequencing errors – mismatches supported by less than 
three reads 

 Before error correction:  
93.8 million reads aligned, 0.12 sequencing error per read 

 After error correction: 
 97.5 million reads aligned, 0.02 sequencing error per read 

 



Results – 100 bp, CPU and Memory (1) 

Method CPU usage Peak memory usage 

SOAPdenovo 13 h 29 GB 

IDBA-UD 49 h 112 GB 

MetaVelvet 8 h 21 GB 

Omega 15 h  105 GB 



Results – 100 bp, CPU & Memory (2) 

 Omega: 
 1.5 h – building hash table 

 2.7 h – indentifying contained reads 

 7.1 h – constructing the overlap graph 

 3.5 h - simplifying the graph 

 Peak memory usage:  
 At the end of overlap graph construction 

 Reads (50 GB) + hash table (5 GB) + overlap graph (50 GB) 

 



Results – 100 bp (1) 



Results – 100 bp (2) 



Results – 300 bp 



Discussion 

 Computationally simulated data cannot reproduce many 
complications of Illumina sequencing 

 Omega was comparable on 100 bp dataset 

 Omega was superior on 300 bp dataset 

 Suitable for different data: 
 Omega – long reads, high coverage 

 MetaVelvet, SOAPdenovo – efficient in memory and CPU usage 

 IDBA-UD – better assembly for more genomes and shorter reads 

 Celera – good for long reads  

 



Summary 

 Overlap graph is effective 

 More useful for future Illumina technologies with longer 
reads and higher throughput 

 



Thank you for your attention! 


