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A new antibiotic kills pathogens without
detectable resistance
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Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public
health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable
bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this
platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped
source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using
specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured
bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid Il (precursor of
peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus
aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards
developing antibiotics that are likely to avoid development of resistance.
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Introduction (1/2)

Antimicrobial drug discovery is uniquely difficult

Primarily due to the poor penetration of compounds into bacterial cell

Most of the antibiotics introduced to the clinics are dicovered by screening
cultivable soil microorganisms

About 99% of all species in external environment are uncultured

- promising source of new antibiotics



Introduction (2/2)

The discovery of a new cell wall inhibitor from environment, teixobactin.

Most antibiotics target proteins.
It is relatively easy for a microbe to become resistant to those drugs by
accumulating mutations that alter the target protein’s shape.

Unusually for an antibiotic, teixobactin is thought to attack microbes by binding
to fatty lipids that make up the bacterial cell wall

It is difficult for a bacterium to alter such fundamental building blocks of the cell.
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Cell wall
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Growing uncultivable bacteria

iChip — used for simultaneously isolate and grow uncultured bacteria
Growth recovery by this method approaches ca 50% vs 1% on a nutrient Petri dish
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Extended Data Figure 1 | The iChip. a-c, The iChip (a) consists of a central ~ suspension of cells in molten agar, the through-holes capture small volumes of
plate (b) which houses growing microorganisms, semi-permeable membranes  this suspension, which solidify in the form of small agar plugs. Alternatively,
on each side of the plate, which separate the plate from the environment, molten agar can be dispensed into the chambers. The membranes are

and two supporting side panels (c¢). The central plate and side panels have attached and the iChip is then placed in soil from which the sample originated.
multiple matching through-holes. When the central plate is dipped into



Identification of teixobactin

A substantial number of
uncultured isolates are able to
grow in vitro

Extracts from 10,000 isolates
obtained by growth in iChips were
screened for antimicrobial activity
on plates overlaid with S.aureus

Eleftheria terrae (PB-
proteobacteria) showd a good
activity
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Extended Data Figure 2 | 165 rRNA gene phylogeny of Eleftheria terrae.
a, The phylogenetic position of E. terrae within the class p-proteobacteria. The
165 rRNA gene sequences were downloaded from Entrez at NCBI using
accession numbers retrieved from peer-reviewed publications. b, The
phylogenetic position of E. ferrae among its closest known relatives, The
sequences were downloaded from NCBI using accession numbers retrieved
from the RDP Classifier Database. For both trees, multiple sequence alignments
(MSA) were constructed using ClustalW2, implementinga default Cost Matrix,

the Neighbour-Joining (NJ) clustering algorithm, as well as optimized gap
penalties. Resulting alignments were manually curated and phylogenetic trees
were constructed leveraging PhyML 3.0 with a TN93 substitution model

and 500 Bootstrap iterations of branch support. Topology search optimization
was conducted using the Subtree-Pruning-Regrafting (SPR) algorithm with
an estimated Transition-Transversion ratio and gamma distribution
parameters as well as fixed proportions of invariable sites.



Figure 1 | The structure of teixobactin and the
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Excellent activity against Gram-positiive pathogens including drug-resistant strains

Table 1 | Activity of teixobactin against pathogenic microorganisms

Organism and genotype Teixobactin MIC (ugmli™1)
S. aureus (MSSA) 0.25
S. aureus + 10% serum 0.25
S. aureus (MRSA) 0.25
Enterococcus faecalis (VRE) 0.5
Enterococcus faecium (VRE) 0.5
Streptococcus pneumoniae (penicillin®) =0.03
Streptococcus pyogenes 0.06
Streptococcus agalactiae 0.12
Viridans group streptococci 0.12
B. anthracis =0.06
Clostridium difficile 0.005
Propionibacterium acnes 0.08
M. tuberculosis H37Rv 0.125
Haemophilus influenzae 4
Moraxella catarrhalis 2
Escherichia coli 25
Escherichia coli (asmB1) 2.5
Pseudomonas aeruginosa =32
Klebsiella pneumoniae =32

The MIC was determined by broth microdilution. MSSA, methicillin-sensitive S. aureus; VRE,
vancomycin-resistant enterococci.
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Figure 2 | Time-dependent killing of pathogens by teixobactin. a,b, S. aureus
were grown to early (a), and late (b) exponential phase and challenged with
antibiotics. Data are representative of 3 independent experiments =+ s.d.

¢, Teixobactin treatment resulted in lysis. The figure is representative of

3 independent experiments. d, Resistance acquisition during serial passaging
in the presence of sub-MIC levels of antimicrobials. The y axis is the highest
concentration the cells grew in during passaging. For ofloxacin, 256 X MIC
was the highest concentration tested. The figure is representative of 3
independent experiments.
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Teixobactin mechanism
Teixobactin is a peptidoglycan synthesis inhibitor (like vancomycin)

Resistance is not developed to this compound, suggesting that the target is not a
protein

Teixobactin inhibits peptidoglycan biosynthesis with either lipid |, lipid Il or lipid Il
as a substrate.

Vancomycin binds to lipid Il

Teixobactin is active against vancomycin-resistant enterococci that have modified
lipid Il

Teixobactin also binds to the wall teichoic acid (WTA) precursor lipid lll. Inhibition
of WTA biosynthesis steps is lethal due to accumulation toxic intermediates.
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Figure 4 | Teixobactin is efficacious in three mouse models of infection.

a, Single dose treatment (i.v., 1 h post-infection, 6 mice per group) with
teixobactin and vancomycin in septicemia protection model using MRSA.
Survival is depicted 48 h after infection. b, Single dose (i.v., 2 h post-infection,
4 mice per group) treatment with teixobactin and vancomycin in neutropenic
mouse thigh infection model using MRSA. For drug-treated animals, thigh
colony-forming units (c.f.u.) were determined at 26 h post-infection. For
controls, c.f.u. in thighs were determined at 2 h and 26 h post-infection. ¢, Two
dose treatment, 5 mice per group, with teixobactin (i.v., 24 h and 36 h post-
infection) and single dose treatment with amoxicillin (subcutaneous, 24 h post-
infection) in immunocompetent lung infection model using S. pneumoniae.
Lung c.f.u. were determined at 48 h post-infection. The c.f.u. from each
mouse are plotted as individual points and error bars represent the deviation
within an experimental group. *P << 0.05, ***P << 0.001 (determined by
non-parametric log-rank test).



Concluding remarks
Very promising new bactericidal antibiotics was dicovered -
teixobactin

There are signs that pathogens will be slow to evolve resistance to
teixobactin

Teixobactin is active against the deadly bacterium MRSA (methicillin-
resistant Staphylococcus aureus)

Antibiotic has yet to be tested in larger number of bacterial strains
and peole.



