

T. Koestler, A. Von Haeseler, I. Ebersbergen REvolver: Modeling Sequence Evolution under Domain Constraints

Mol. Biol. Evol. 29(9): 2133-2145. (2012)

Introduction

- Simulation the evolution of biological sequences
 - Reduce complexity vs. Biological reality
- Seq-Gen, ROSE (indels)
- INDELible, SIMPROT, indel-Seq-Gen (manual assignment of evolutionary parameters)

Introduction

- Problems:
 - No automatized procedure to extract meaningful constraints
 - No standard operating procedure for inferring evolutionary constraints
 - Structures not available
 - Indel lengths from a single distribution

A New Approach

- Comparing homologous sequences
 - Sites that remain entirely conserved over time
 - Sites displaying only a subset of the amino acid alphabet
 - Sites that appear to be free to change
- Footprint of a constrained evolutionary process
- Profile Hidden Markov Model (pHMM)

REvolver

- Emission probabilities as site-specific AA frequeces
- Indels preferrably placed at positions where they have been observed in real instances
- No formation of repeated nested insertions
- Information about site-specific evolutionary constraints maintained throughout the simulation
- Prevents a simulated sequence from losing its identity as a domain instance

MOLECULAR BIOLOGY

AND EVOLUTION

Structure of a pHMM: The pHMM comprises match states (Mx), insertion states (Ix), deletion states (Dx), a Begin state, and an End state.

Koestler T et al. Mol Biol Evol 2012;29:2133-2145

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

The Simulator

Gillespie algorithm (1977)

Algorithm 1 Outline of the simulation procedure

```
\Lambda \leftarrow \Lambda_{\rm S} + \Lambda_{\rm I} + \Lambda_{\rm D}
t_{\rm rem} = t
t_{\rm w} \sim {\rm Exp}(\Lambda)
while t_w \leq t_{rem} do
    randomVariable \sim Uniform()
    if random Variable \leq \Lambda_l / \Lambda then
      doInsertion()
else if random Variable \leq (\Lambda_l + \Lambda_D)/\Lambda then
      doDeletion()
    else
      doSubstitution()
    end if
    \Lambda = updateEventRate()
    t_{\text{rem}} \leftarrow t_{\text{rem}} - t_{\text{w}}
     t_{\rm w} \sim {\rm Exp}(\Lambda)
end while
```


Unconstrained segments

Substitutions

- Substitution model Q
- Scaling factor
 - Same at all sites
 - Continuous gamma distribution
 - Discrete gamma distribution
- Insertions and Deletions
 - **Position** uniform distribution
 - Length Geometric distribution
 - Length Zipfian distribution

Constrained segments

- Substitutions
 - Each site in the domain gets assigned its own model Q
- Insertions
 - Length: geometric distribution (1-p)
 - Nested insertions
- Deletions
 - No explicit deletion length
- Resurrection of M states

A generic insertion scenario: circles represent the amino acid sequence, the corresponding state path is shown as squares.

Koestler T et al. Mol Biol Evol 2012;29:2133-2145

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Additional Features

- Input phylogenetic tree, a root sequence
- Output multiple alignment of simulated leaf node sequences
- Lineage-specific evolution
- Running time
- www.cibiv.at/software/revolver
 - Requires Java6 and HMMER3 software package
 - Pfam or SMART
- Verification

Positions and lengths of insertions in the ABC_tran domain.

Koestler T et al. Mol Biol Evol 2012;29:2133-2145

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Benchmarking and Example Applications

• Simulated evolution of G protein-coupled receptors (GPCR)

		Revolver	iSG	ROSE	SIMPROT	Seq-Gen
•	tm regions	6.89±0.60	7.03±0.30	5.94±1.25	0.20±0.37	6.84±0.91
•	Pfam bit score	102.75	-5.09	-31.47	_	-7.18
•	Top n BlastP hits					
•	25	152.0	174.0	141.1	-	196.7
•	100	143.6	164.7	132.7	_	183.3
•	250	135.5	155.9	124.4	_	177.8

Fraction of preserved Pfam (A) and SMART (B) domains.

Koestler T et al. Mol Biol Evol 2012;29:2133-2145

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Domain architectures of sequences evolved with REvolver.

Koestler T et al. Mol Biol Evol 2012;29:2133-2145

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Discussion

- The maintenance of protein domains in the course of evolution
- The large-scale applicability due to the automatic inference of sequencespecific evolutionary constrants