

PLOS GENETICS

Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

A. P. Jason de Koning¹, Wanjun Gu^{1[#]}, Todd A. Castoe¹, Mark A. Batzer², David D. Pollock¹*

1 Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States of America, 2 Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America

Received August 5, 2011; Accepted October 4, 2011; Published December 1, 2011

Age Brauer

Bioinformatics Journal Club 27th of Feb, 2012

Repeats in eukaryotic genomes

Tandem repeats

- Microsatellites 1-6 nt
- Minisatellites 10-60 nt
- Transposable elements (TE)
 - Class-I: Retrotransposons
 - SINEs: Alu, MIR
 - LINEs: L1, L2, CR1
 - LTRs
 - Class-II: DNA transposons

Figure 1. Principles of repeat identification using *P***-clouds.** A) True data distribution representing divergence within a TE family from a master element sequence (center). B) Consensus sequence based search throws away information by collapsing observed data to a single sequence. C) *P-clouds* clusters related high-abundance oligos, thus providing better coverage of sequence space.

P-clouds

- Find the number of occurences of each specific oligo in a genome.
 - Oligo length $W = \log_4(n) + 1$
- The highest frequency oligo initiates a cloud.
- Similar high-frequency oligos are added to the cloud.
 - *'similar'*: differences of up to 3 nt from core oligo (adjustable)
 - *'high-frequency'*: adjustable

Repeat region annotation

- Oligos that were members of *P-clouds* were mapped back to the original genome sequence.
- Segments of the genome with high *P-cloud* oligo density were demarcated as "repeated regions".
- 80% of every 10 consecutive oligos must be composed of *P-cloud* oligos (adjustable).

False positive assessment

• A simulated random non-repetitive genome sequence constrained to have the same dinucleotide frequencies in 1 Mbp windows as the original human genome.

Figure 2. *P*-clouds and RepeatMasker annotation of the repeat structure of the human genome. Results are displayed as a percentage of the ungapped genome assembly length. A) Consensus results prior to this study indicate that <50% of the genome is repetitive (*RepeatMasker*). B) Analysis using *P*-clouds suggests more than two-thirds of the genome is repetitive or repeat-derived.

Table 1. Overlap between genome features and repetitive regions.

Genome Feature	Fraction of Genome	Fraction of RepeatMasker annotations	Fraction of <i>P-clouds</i> annotations	Fraction of Novel P-clouds annotations
Known Genes (transcribed unit)	37.48%	32.47%	36.02%	41.42%
Segmental Duplications	5.22%	5.33%	5.75%	6.02%
Duplicated Regions (WSSD)	3.53%	3.16%	3.87%	4.63%
Known Genes (exons)	1.12%	0.05%	0.56%	1.29%
Simple Repeats	1.91%	3.00%	2.36%	1.06%
CpG Islands	0.74%	0.07%	0.26%	0.56%
Pseudogenes	0. <mark>19</mark> %	0.07%	0.16%	0.28%
Total Size:	2.85 Gbp	1.39 Gbp	2.02 Gbp	0.84 Gbp

Total repetitive sequence detected by either RepeatMasker or *P-clouds* was 2.23 Gbp (out of a total 2.85 Gbp sequence in the ungapped assembly). doi:10.1371/journal.pgen.1002384.t001

Element specific P-clouds (ESPs)

Human genome regions that are not masked by RepeatMasker:

- 749,395 putative Alu regions
 - 20,919,291 bp (FP=22.17%)
- 7,518,362 putative MIR regions

• 227,472,307 bp (FP=65.42%)

Relationship to other *de novo* estimates

Human chromosome 22

- RepeatMasker(RM) with RepBase
- RepeatScout+RM
- RepeatScout+RM with RepBase
- RepSeek

47.9% 36.9% 52.5% 56.2%

• P-clouds combined with RM+RepBase: 70.6%

Conclusions

- *De novo* search methods can be used to detect repeat-derived sequences that are too diverged or degraded to be easily detected by alignment to known transposable element consensus sequences.
- *P-clouds* predicts >840 Mbp of additional repetitive sequences in human genome.
- >66%-69% of the human genome sequence is repetitive or repeat-derived.
- ESPs identified ~100 Mb of previously unannotated human Alu and MIR elements.