

High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat

Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A. Nature, July 2013

Bioinformatics Journal Club

6. February 2014

Märt Roosaare

Naked mole rat (NMR)

- Subterranean, East Africa
- Colonies 60-80 individuals, large tunnel systems (3+ km)
- Skin does not feel pain (missing a neurotransmitter)
- Exceptionally long life span for its size (30+ years)
- Very resistant to cancer formation

Paljastuhnur (*Heterocephalus glaber*)

Hyaluronan (HA)

- Unbranched glucuronic acid/N-acetylglucosamine
 polymer
- One of the main components of extracellular matrix
- Very large molecular mass (human = 0,5 to 2, mouse
 0,5 to 3 MDa)
- Biological effects depend on polymer length (high mass HA represses mitotic signalling and inflammation, low mass vice-versa)
- HAS1, HAS2, HAS3

n

Accidental discovery?

 When culturing multiple NMR cell lines, some became very viscous after couple of days. Reason - high molecular mass HA synthesis

martu ülikool

HAS 2

	d	160		17	ο.	180	190	200
•	H. glaber	PGET	DESHK	ESSOH	ντοινι	SKŠVCIMO	KWGGKREVM	YTAFRAL %
	C. porcellus	E				NRN		K
	R. norvegicus	I				N I		
	M. musculus	8				N I		
•	O. cuniculus					N		
	H. sapiens					N I		
•	M. mulatta					N I		· · · · · · · ·]
	P. troalodytes					N I		
	C. jacchus					N I		
	C. familiaris					N I		
	A. melanoleuca					N I		
	B. taurus					NI.T.		
	S. scrofa					N I		
	O. anatinus	6				<mark>N</mark>		K

	280								290											300									310										320					
H. glaber	V	0	С	İ	S	G	Ρ	L	Ġ	M	Y	RI	N	Ś	L	L	Н	Е	F,	V	E	D١	N	S	5	DE	F	Ń	GI	VIC	0	s	F	G	D	D	ŔI	Н	L1	٢N	١Ė	۲V		
C. porcellus																								N.	N,																			
R. norvegicus																								N.	N,																			
M. musculus																								N.	N,																			
O. cuniculus																	÷							. N	N,																			
H. sapiens																	÷.							۱.	N,																			
M. mulatta																									N.								÷											
P. troglodytes																								. r	N.				. 3	5.														
C. jacchus			•			•										•	÷								N.	• •			•		•								•					
C. familiaris			•	•				•	÷	•					•	•		÷	÷				• •	ľ	N.	• •	÷		• •	S .	•		÷	÷	÷				•					
A. melanoleuca			•	•	•	•		•		•	•				•	•		÷	÷	•			•	ľ	N.	• •	÷	•	•	S .	•		÷		•	•	•		•					
B. taurus			•	•	•	•		•	•	•	•	•			•	•	÷	•	÷	•		•	•	ľ	N.	• •	÷	•	•	5.	•		÷	•	•	•	•		•					
S. scrofa			•	•		÷		•	÷	•					•	•	÷.	÷	÷				•	ľ	N.	• •	÷		•	5.	•		÷	÷	÷				•					
O. anatinus			•	•		•		•	•	•					•	•		÷	÷	•			•	ſ	N.	•	÷	•			•		÷	÷	•	•	•		•			•		

martu ülikool

- A NMR HAS2 overexpressed in HEK293 cells
- B blue stained tissues (staining specific to HA)
- C NMR skin fibroblasts have low HA-ase activity (incubated in media containing HMM-HA)
- D NMR tissues
 have also low HAase activity

Contact inhibition (CI)

- Anti-cancer mechanism cells stop growing when
 they encounter other cells/extracellular matrix
- NMR cells arrest at much lower densities
- B HA signalling triggers CI, through CD44 receptor (B, CD44-blocking antibody)

TARTU ÜLIKOOL

 D - NMR skin fibroblasts show more affinity for HA

HA role in cancer resistance

- Anchorage-independent growth (cells growing without contact with each other/extracellular matrix) correlates with tumorigenicity
- Mouse and NMR skin fibroblasts
- Soft agar assay, transfection of different oncoproteins
 - Hras V12 (mutated GTPase, permanently active)
 - SV40 Large T Antigen (LT) binds and disables
 p53 and pRb tumor suppressor proteins, whereas
 its mutants =>
 - LTK1 (K1) disables p53
 - Delta434 disables pRb

martu ülikool

Mouse xenografts

- Positive control mouse skin fibroblasts transfected with SV40 LT and Ras V12
- Xenografts with transfected NMR cells (LT + V12)
 - Active HAS2
 - HYAL2 (HAdegrading) cDNA
 - RNA-induced silencing of HAS2

Conclusions

- Cancer resistance is derived from both lower HA-ase activity and very high molecular mass HA (HMM-HA)
- HMM-HA could have evolved as an adaption to subterranean lifestyle - gives flexible skin (a different subterranean rodent - blind mole rat - also secretes HMM-HA)
- Naked mole rat HMM-HA or suppressing HYAL2/targeting HA-signalling pathway could potentially be used for cancer prevention