
Integration of string and de Bruijn graphs for genome assembly
Huang YT, Liao CF. Bioinformatics, 32(9); 2016

JC 11.05.2016Fanny-Dhelia Pajuste



Motivation
• Two graph models mostly used for genome assembly are string and de Brujin graphs
• String graph can use entire reads for better assembly of repetitive regions
• De Brujin graphs use k-mers for better assembly of error-prone regions
• None of the assemblers clearly outperforms the others across all datasets
• The new assembler StriDe uses the best features of both graph models
• The results are comparable to other methods for both long and short read data



Genome assembly
• Although next-generation sequencing and genome assembly from sequencing reads are widely used, the assembled genomes are still fragmented
• Fragmentation of the assembled genomes cause problems in downstream processing (estimation of gene family size, comparative analysis etc)
• The accuracy, contiguity and speed of existing assemblers have been compared in many projects, but none of these clearly outperforms others



OLC graph vs de Brujin graph
OLC (overlap layout consensus):
• Assemblers: MIRA, Newbler, Celera
• Graph: a vertex contains a read, an edge denotes to two overlapping reads
• A feasible layout of reads is found from the graph
• Good for long reads
• Inefficient for great amount of short reads

De Brujin graph:
• Assemblers: SOAPdenovo, Velvet, ABySS, ALLPATHS
• Divides reads into k-mers
• Graph: A vertex contains a k-mer, an edge denotes to two adjacent k-mers overlapping by k-1 letters
• More efficient
• Doesn’t work well with repetitions longer than k
• SPAdes – paired k-mers from paired-end reads



String graph
• Similar to OLC graph, but without transitive edges
• Assembler: SGA (String Graph Assembler)
• Can assemble mammalian-size genomes
• Uses many properties of OLC and de Brujin but doesn’t work as well with real data
• The main problem is assembling regions that are error-prone due to sequencing bias



StriDe additions
• Decomposes reads in error-prone regions
• Extends paired-end reads to long reads using FM-index
• Improved error correction algorithm
• Improved overlap computation
• Specialized layout algorithms
• Full parallelization





Error correction
• Usually a k-mer frequency cut-off is used (depends on sequencing bias and repeats)
• The difference of adjacent k-mer frequencies are small and stable regardless of the repetitions and low coverage
• Large frequency differences indicate sequencing errors
• Error base is identified if the difference for adjacent k-mers is bigger than a given threshold (default: 10)



• The frequency turbulence is eliminated by replacing the error base letter
• For indel and cluster errors seed-and-extend approach is used to align overlapping reads
• Banded dynamic programming is used to compute exact alignment



Extension of paired-end reads
• The paired-end reads are extended inward into long reads
• Finds feasible extensions from the first to the other end (FM-index walk)



Read decomposition in Error-prone regions 
• Paired-end reads that can not be extended are often error-prone
• Reads are decomposed into subreads in each error base
• Read is broken into k-mers, the breakpoint is found if oneof them has overlap to otherk-mer(s)
• K-mer frequency has to be <3
• Subreads can be used later for assembly



Overlap computation
• Most time-consuming part of the graph creation
• The minimum overlap length has to be k-1 (due to the decomposed subreads)
• Short overlap length leads to a huge amount of edges and affects greatly the efficiency and the memory usage
• A pruning procedure removes small overlaps with other reads if longer overlaps are present
• The length difference has to be greater than a given threshold (default: half of the read length)
• The number of retained overlaps equals to the sequencing coverage





Graph layout
• The layout algorithm has to find unique paths of vertices in the graph to maximize contiguity and accuracy of the assembly 
• The major challenge is distinguishing true overlapping edges from chimeric/random edges for vertices with two or more ambiguous edges
• Features used: overlap lengths, overlap ratio (overlap to read length), overlap ratio differences on the same edge
• Statistics from simple-path edges is used to get the 95% confidence levels for these features





• Removal of chimeric vertices:
• Chimeric vertices have shorter overlaps
• The lengths of the vertices are smaller (don’t merge into larger sequences)
• K-mer frequency is lower
Removed: small (≤read length) and low frequency (≤3) vertices with short (>95% confidence) overlaps to neighbours

• Removal of edges with low overlap ratio
• Due to extended and decomposed reads the overlap length isn’t sufficient for distinguishing true overlapping reads

• Removal of edges with large overlap differences
• Two neighbouring vertices may have very different sizes

• Tip/Bubble removal after every step



Results
• 12 datasets of genome sequencing of different bacteria using Illumina HiSeqand MiSeq platforms from GAGE-B
• Compared to ABySS, CABOG, MaSurCa, SOAPdenovo, SGA, SPAdes and Velvet
• K=31 was used
• The percentage of extender reads can be > 70% for high quality reads
• For low quality reads the decomposed read percentage can go to 90%
• Medians: 52%, 13%, 25%



• StriDe assembler outperforms most assemblers in terms of contiguity



The misassembled-indel rate (per 100kb) is shown in parentheses



Time and memory usage
• 20-40 minutes for 12 GAGE-B datasets
• 1-2 GB RAM
• FM-indices: 27-237 MB
• Graph: 6-40 MB
• Run in a server with 48 cores and 256 GB of RAM



Conclusion
• A new assembler StriDe uses best features of string graph and de Brujin graphs
• A set of improvements are introduced
• Main properties are decomposition of reads to subreads in error-prone regions and extension of paired-end reads to longer reads for repetitive regions
• The results are comparable to other methods for both long and short read data



Thank you!


