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Motivation

* Two graph models mostly used for genome assembly are string and de
Brujin graphs

 String graph can use entire reads for better assembly of repetitive regions
* De Brujin graphs use k-mers for better assembly of error-prone regions
* None of the assemblers clearly outperforms the others across all datasets
* The new assembler StriDe uses the best features of both graph models

* The results are comparable to other methods for both long and short read
data



Genome assembly

* Although next-generation sequencing and genome assembly from
sequencing reads are widely used, the assembled genomes are still
fragmented

* Fragmentation of the assembled genomes cause problems in
downstream processing (estimation of gene family size, comparative
analysis etc)

* The accuracy, contiguity and speed of existing assemblers have been
compared in many projects, but none of these clearly outperforms
others



OLC graph vs de Brujin graph

OLC (overlap layout consensus):  De Brujin graph:

. : * Assemblers: SOAPdenovo, Velvet,
Assemblers: MIRA, Newbler, ABYSS, ALLPATHS

e Divides reads into k-mers

Celera

* Graph: a vertex contains a read,

e Graph: A vertex contains a k-mer, an
an edge denotes to two P

edge denotes to two adjacent k-mers

overlapping reads overlapping by k-1 letters
A feasible layout of reads is * More efficient
found from the graph  Doesn’t work well with repetitions

longer than k

* Inefficient for great amount of end reesadspalre Mers Trrom paire
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* Good for long reads



String graph

* Similar to OLC graph, but without transitive edges
e Assembler: SGA (String Graph Assembler)
* Can assemble mammalian-size genomes

e Uses many properties of OLC and de Brujin but doesn’t work as well
with real data

* The main problem is assembling regions that are error-prone due to
sequencing bias



StriDe additions

* Decomposes reads in error-prone regions

* Extends paired-end reads to long reads using FM-index
* Improved error correction algorithm

* Improved overlap computation

 Specialized layout algorithms

* Full parallelization
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Supplementary Figure S2. Workflow of StriDe assembler The black rectangles represent software
components and the remaining are input/output of each component.



Error correction

e Usually a k-mer frequency cut-off is used
(depends on sequencing bias and repeats)

900%! 10%

* The difference of adjacent k-mer frequencies
are small and stable regardless of the
repetitions and low coverage

* Large frequency differences indicate
sequencing errors
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* The frequency turbulence is eliminated by replacing the error base letter

* For indel and cluster errors seed-and-extend approach is used to align
overlapping reads

* Banded dynamic programming is used to compute exact alignment
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Fig. 3. (a) The k-mer frequency drops when the rightmost base reaches the
error and increases after leaving the error; (b) The kmer seeds are selected
from the regions flanking the low-frequency region and are used for identify-
ing potentially overlapping reads



Extension of paired-end reads

* The paired-end reads are extended inward into long reads
* Finds feasible extensions from the first to the other end (FM-index
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Fig. 4. lllustration of the FM-index walk within a paired-end read. The implicit/
initial k-mer size is 3 and shown only for illustration purposes. Each tree node
internally stores forward and reverse suffix array (SA) intervals. The solid
lines represent successful extensions of the existing SA interval and creation
of new leaf nodes, where the dashed lines represent infeasible SA intervals:
no new nodes are created



Read decomposition in Error-prone regions

* Paired-end reads that can not be extended are often error-prone

* Reads are decomposed into
subreads in each error base

e Read is broken into k-mers,
the breakpoint is found if one
of them has overlap to other
k-mer(s)

* K-mer frequency has to be <3

e Subreads can be used later for
assembly

Ref: ...CGGATAGCGATAGATATCCGGTCGAGGCAGCACTGGATCG. ...
Rl : ...CGGATAGCGATAGATATCCGGGCGA
R2 : CGGATAGCGATAGATATCGGTCGG
R3 : GATTGAAATCCGGTCGGGGCAGCAC
R4 : TCCGETCGAGGCAGCACTGGATCG
R3
.—AATCCGGTC
R1,R2 R3 R4
— .. I rarcceeTe VY arcceaTea TCCGGTCGA — .. —
R3
TCCGGTCGG —.

Fig. 5. lllustration of decomposition across four reads (R1-R4). The error is

boldfaced, and error subreads are shown in black boxes, which are often tips

in the graph. Correct subreads are thus overlapped and can be assembled at

a later stage



Overlap computation

* Most time-consuming part of the graph creation

* The minimum overlap length has to be k-1 (due to the decomposed
subreads)

 Short overlap length leads to a huge amount of edges and affects
greatly the efficiency and the memory usage

* A pruning procedure removes small overlaps with other reads if
longer overlaps are present

* The length difference has to be greater than a given threshold
(default: half of the read length)

* The number of retained overlaps equals to the sequencing coverage
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Fig. 6. Collection and pruning of a suffix array (SA) interval list during overlap
computation. In this example, only the top five SA indices (set by Lax) are re-
tained, which are from the top two SA intervals ([10,12] and [8,9]). That is,
only the overlap to reads D, E, F, G and H are retained



Graph layout

* The layout algorithm has to find unique paths of vertices in the graph
to maximize contiguity and accuracy of the assembly

* The major challenge is distinguishing true overlapping edges from
chimeric/random edges for vertices with two or more ambiguous
edges

* Features used: overlap lengths, overlap ratio (overlap to read length),
overlap ratio differences on the same edge

e Statistics from simple-path edges is used to get the 95% confidence
levels for these features
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Supplementary Figure S7. Collection of overlap lengths, overlap ratios, and overlap ratio differences from
the initial simple paths. The simple path (or unique path) refers to edges of two vertices with unique overlap.



* Removal of chimeric vertices:
* Chimeric vertices have shorter overlaps
* The lengths of the vertices are smaller (don’t merge into larger sequences)
* K-mer frequency is lower
Removed: small (Sread length) and low frequency (£3) vertices with short
(>95% confidence) overlaps to neighbours
* Removal of edges with low overlap ratio
* Due to extended and decomposed reads the overlap length isn’t sufficient for
distinguishing true overlapping reads
* Removal of edges with large overlap differences
* Two neighbouring vertices may have very different sizes

 Tip/Bubble removal after every step



Results

» 12 datasets of genome sequencing of different bacteria using lllumina HiSeq
and MiSeq platforms from
GAG E_B " B Extended Reads  EDecomposed Reads O Unchanged Reads

 Compared to ABySS, CABOG,
MaSurCa, SOAPdenovo, SGA,
SPAdes and Velvet

e K=31 was used

* The percentage of extender reads
can be > 70% for high quality reads

* For low quality reads the

decomposed read percentage

can go to 90% Fig. 10. The percentages of extended, decomposed and unchanged reads
across the 12 datasets. The percentages of decomposed reads can be as high

° Med ia ns: 52%’ 13%, 25% as 90% and as low as 10% owing to various sequencing quality




» StriDe assembler outperforms most assemblers in terms of
contiguity

Table 1. Assembly contiguity (N50 in kb) of eight short-read (HiSeq) and four long-read (MiSeq) datasets from GAGE-b

Assembler Platform ABySS CABOG MaSuRCa SOAPdenovo SGA SPAdes Velvet StriDe
Aeromonas bydrophila HiSeq 230.7 278.4 838.5 243.9 67.1 237.6 184.4 827.8
Bacillus cereus VD118 HiSeq 41.6 a1l 75.2 57.9 20.5 78.6 38.9 90.6
Bacteroides fragilis HiSeq 116.3 94.2 29,7 116.1 45.0 127.4 125.2 151.5
Mycobacterium abscessus HiSeq 128.5 78.2 147.4 147.2 28.7 278.4 60.3 298.0
Rhodobacter sphaeroides HiSeq 115.8 112 36.4 10.5 4.8 173.3 13.1 175.1
Staphylococcus aureus HiSeq 99.2 102.8 228.9 146.3 39.9 148.1 122.5 2222
Vibrio cholerae HiSeq 172.6 48.8 167.9 106.5 23.8 344.0 39.5 356.0
Xanthomonas axonopodis HiSeq 74.1 105.8 115.7 74.2 48.9 117.2 83.0 113.0
Bacillus cereus ATCC MiSeq 139.1 150.5 2701 246.3 18.9 3111 24.5 340.7
Mycobacterium abscessus MiSeq 68.5 8.3 18.2 113.3 26.5 343.8 41.5 233.6
Rhodobacter sphaeroides MiSeq 21.4 30.5 130.6 33.5 9.2 132.2 24.2 130.5

Vibrio cholerae MiSeq 60.3 32.5 46.3 106.5 46.2 356.1 67.1 3441




Table 2. The number of misassemblies by each assembler on short-read (HiSeq) or long-read (MiSeq) datasets

Assembler Platform  ABySS CABOG MaSuRCa SGA SOAPdenovo  SPAdes
B.cereus VD118*  HiSeq 1(140.14) 0(281.24) 3(235.23) 0(97.50) 1(127.95) 1(115.88
M.abscessus HiSeq 3(0.98) 7 (5.81) 7 (3.58) 1(0.43) 9 (0.67) 5(0.48)
R.sphaeroides HiSeq 945.37) 4 (1.55) 5(2.13) 1(0.30) 2 (1.94) 2(119)
V.cholerae HiSeq 3(3.98) 20 (6.84) 16 (6.00) 3 (2.60) 21 (3.67) 7 (3.03)
B.cereus ATCC MiSeq 6 (4.60) 4(2.37) 8 (2.13) 5(2.60) 2.(2.13) 0(2.72)
M.abscessus MiSeq 2 (0.44) 122 (0.74) 70 (0.47) 7 (0.33) 5(0.69) 6 (0.40)
R.sphaeroides MiSeq 12 (4.71) 6 (0.46) 12 (1.56) 2 (0.40) 1(0.40) 3(1.20)
V.cholerae MiSeq 2 (2.64) 17 (3.35) 24 (3.47) 3(2.75) 16 (3.25) 8 (2.83)

The misassembled-indel rate (per 100kb) is shown in parentheses



Time and memory usage

* 20-40 minutes for 12 GAGE-B datasets

* 1-2 GB RAM

* FM-indices: 27-237 MB

e Graph: 6-40 MB

* Run in a server with 48 cores and 256 GB of RAM



Conclusion

* A new assembler StriDe uses best features of string graph and de
Brujin graphs

* A set of improvements are introduced

* Main properties are decomposition of reads to subreads in error-
prone regions and extension of paired-end reads to longer reads for
repetitive regions

* The results are comparable to other methods for both long and short
read data



Thank youl!



