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Abbreviations and definitions 

 

ACR – arcsine transformed call rate 

APEX  – Arrayed Primer Extension; a genotyping platform developed by Asper Biotech 

Ltd. 

CFS  – chance of false signal 

CR  – call rate 

GLM  – general linear models 

LSI  – logarithmic average standardised signal intensity 

MSE  – mean squared errors 

P – the probability value or p-value 

PERL  – Practical Extraction and Reporting Language; a programming language 

PHP  – PHP Hypertext Preprocessor; a programming language 

R2 – coefficient of determination 

RFU  – Relative Fluorescent Units 

SB-factor – sequence-based factor 

SBS  – sequencing-by-synthesis 

SI  – average standardised signal intensity 

SNP – single nucleotide polymorphism 

SS1  – type-1 sums of squares 

SS2 – type-2 sums of squares 

Tm  – oligonucleotide melting temperature 
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INTRODUCTION 

 

This study is divided into two parts: the literature overview and practical part. In the 

literature overview, a brief background is given about the importance of resequencing, 

available resequencing technologies and issues regarding the design of oligonucleotide probes 

– an essential component of many resequencing technologies. In the practical part, a statistical 

method for predicting the quality of resequencing probes is developed and the resulting 

algorithm is integrated into probe design software. 

 

I LITERATURE REVIEW 

1. Resequencing background 

1.1. Importance of resequencing 

 

DNA sequencing is important for gathering information about gene functions for 

biological and medical studies to explain molecular mechanisms and find causes and cures for 

diseases. However, as every living organism is genetically different and variance in 

phenotypes is vast, the gathering of such information doesn’t end with the sequencing of just 

one individual of any species, but must be repeated again and again to discover relationships 

between genotypes and phenotypes – hence the term “resequencing”. 

For human genome, the first general draft has already been available since 2001. It is a 

consensus sequence of several human genomes, i.e. the Golden Path, which provides 

preliminary insight into the structure and function of the human genome and provides starting 

points for future studies and eases subsequent resequencing attempts, required for more 

detailed understanding of individual genomes. 

 However, the cost and throughput of current resequencing technologies are still not at 

a level where DNA resequencing could be made part of routine healthcare inspection – a 

broader goal that would require the cost of sequencing to drop to about $1000 per genome, 

which is comparable to the annual healthcare costs of an average US citizen (Service, 2006). 

Using today’s standard capillary gel electrophoresis, the resequencing of a single individual 
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would take 30 instruments a full year and cost about $10 million (Bentley, 2006). Therefore, 

10000-fold reduction in cost and increase in throughput would be necessary to make 

personalised medicine possible. Even 100 to 1000-fold improvements would make it feasible 

to study human genetic variation or sequence bacterial genomes at a much larger scale than it 

is possible at the moment. 

 To meet this demand many new resequencing technologies are being developed. In 

order to illustrate the diversity of resequencing approaches and summarise the advancements 

made in current technologies, a short description of different methods will be given.  

 

1.2. Current resequencing technologies 

 

Current resequencing methods use a variety of approaches, some of which are rather 

different from classic Sanger sequencing, and range from being in early piloting stages to full 

commercialisation. The following brief overview is not exhaustive, but will illustrate the 

diversity of approaches that can be used in a genome sequencing project. 

 

1.2.1. Synthetic chain termination 

 

The synthetic chain termination method involves the priming of target sequences with 

universal primers and then feeding the polymerase process with a mixture of regular- and 

labelled terminator-nucleotides. The terminator-nucleotides are added in such concentrations 

that all possible read lengths from one to more than a thousand are obtained, with a base-

specific label in the 3’ end. Finally, the sequence is deducted by separating the products by 

electrophoresis and identifying labels as they pass a detector while traversing through the gel 

(Figure 1). The classic example here is the Sanger sequencing. The advances in this field 

include the capillary sequencing instrument and microelectrophoresis (Paegel et al., 2003) – 

the former increases throughput by performing electrophoresis simultaneously in several 

hundred capillaries and the latter aims to reduce reagent volumes by the use of microfluidic 

devices.  
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Figure 1. A scheme depicting the process of sequencing by synthetic chain termination (Bentley, 2006). 

 

1.2.2. Sequencing-by-synthesis (SBS) 

 

Sequencing-by-synthesis (SBS) methods, similarly to Sanger sequencing, rely on 

priming and replicating target DNA. However, here the individual bases are identified directly 

and a subsequent time-consuming electrophoresis step is not needed. SBS can be divided into 

distinct sub-methodologies: base-by-base SBS, pyrosequencing and single-molecule SBS in 

real time. 

  

1.2.2.1. Base-by-base SBS 

 

Base-by-base SBS is achieved by replicating array-bound template DNA with a mix of 

fluorescently labelled reversible terminator nucleotides that allow DNA to be sequenced one 

base at a time. Each incorporated nucleotide stops polymerase activity and the fluorescent 

signal can be read; then the blocking moiety, along with the label, is removed from the 

nucleotide and the next base is added. These steps are iterated until read limit or desired read 

length is reached. Finally, signal intensities are plotted with respect to cycle number and the 

DNA sequence can be deducted (Figure 2). 

Such techniques are used by Illumina (http://www.illumina.com) in their Genome 

Analyzer and by Helicos BioSciences (http://www.helicosbio.com). 
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Figure 2. A scheme depicting the read signals from by-base-by base SBS (Bentley, 2006). Template (black) is 
bound to surface and distinctly labelled nucleotides are incorporated into growing strand one by one. Final 
sequence is determined by plotting the intensities of different signals (i) against the cycle number (n) (here only 
the prevalent signal is shown). 

 

1.2.2.2. Pyrosequencing 

 

Unique to this approach is the use of regular nucleotides, instead of labelled and/or 

terminator ones, and the use of chemoluminescence to detect the incorporation of bases. 

Firstly, template DNA is attached to solid beads, amplified and primed by universal primes 

for subsequent synthesis reactions. Each cycle consists of adding just one out of four 

didesoxynucleotides to the reaction mixture, to avoid mixing signals, and then measuring the 

light that is produced chemically from the released pyrophosphate. By measuring the relative 

intensity of light, compared to other signals, the amount of nucleotides, incorporated in each 

cycle, can be deduced (Figure 3). 

 

 
Figure 3. A scheme depicting the process of pyrosequencing (Bentley, 2006). The successful detection events of 
each cycle (n) and their respective intensities (i) are plotted together to form a flowgram. The intensity is 
proportional to the quantity of incorporated nucleotides. 
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1.2.2.3. Real-time SBS 

 

Real-time SBS is an application, developed to sequence DNA in real time without 

interruptions, i.e. at the rate dictated by the DNA polymerase.  

One such method is to observe the movement of polymerase along template DNA as it 

extends the nascent strand (Greenleaf and Block, 2006). The movement can be observed by 

using two polystyrene beads, one of which is attached to the polymerase and another to the 3’ 

end of template DNA. The reaction is performed in four separate solutions where one of the 

four dNTPs is in lower concentrations. This makes the polymerase pause occasionally when it 

has to incorporate the nucleotide, which is in shortage. As a result, the stopping patterns of the 

polymerase are obtained in case of each limiting nucleotide and the original sequence can be 

deducted (Figure 4). 

 

 
Figure 4. A scheme depicting the reads obtained from real-time SBS (Greenleaf and Block, 2006). Upper 
four diagrams show the motion of the polymerase when each of four different nucleotides is limited. The 
bottom diagram shows the final sequence. 

 

There are other experimental real-time SBS methods that use surface-bound 

polymerase and fluorescently labelled nucleotides. 

VisiGen (http://visigenbio.com) designed a fluorescent resonance energy transfer 

system that uses a donor attached to the polymerase and acceptors attached to the gamma-

phosphates of each dNTP, so that incorporated nucleotides become excited and emit a base-

specific signal.  
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Pacific Biosciences (http://www.pacificbiosciences.com) uses a miniature detection 

chamber in the reaction solution, which houses the polymerase and allows only minute 

amounts of reagents to flow through. All the gamma-phoshpate-labelled dNTPs in the 

chamber are constantly excited, but only those emission signals stand out that belong to the 

type of nucleotide that is currently being incorporated (i.e. A,C,G or T), because others flow 

through faster. 

 
 

 

1.2.3. Sequencing-by-hybridisation 

 

For sequencing by hybridisation, an oligonucleotide array is created to probe specific 

nucleotides in target DNA. A single base of target DNA is queried by four almost identical 

probes, located at different locations on the array, with a varying nucleotide only in the 

middle (Figure 5). Target DNA is labelled, hybridised onto the array, and the spots that 

subsequently yield high signal intensity, identify a specific base on the target sequence.  

 

 
Figure 5. A scheme depicting sequencing by hybridisation (Bentley, 2006). 
Two out of a group four probes are hybridised to target DNA fragments and 
yield a signal, indicating a C/G heterzygote at a specific location on target 
DNA. 

 

This method can also be used in conjunction with ligation, known as sequencing-by-

ligation (see Section 1.2.4). 

 

1.2.4. Sequencing-by-ligation 

 

Sequencing-by-ligation combines hybridisation with ligation steps to query surface-

bound target DNA. The process is initiated by binding universal anchor primers to the 

template DNA and then adding a mixture of oligonucleotides, composed of all possible 9-mer 
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combinations, with each having only their central nucleotide labelled. A matching 

oligonucleotide is hybridised to the template and then ligated to the anchor primer, identifying 

the central nucleotide. Then the label and part of the oligonucleotide is chemically removed 

and the steps are repeated, resulting in a sequence where each fifth nucleotide is known. To 

close the gaps, the process is repeated four more times, with anchor primers shifted by one 

position, until the whole template is sequenced (Figure 6). 

A variation of this method, were two central nucleotides are labelled, is used in 

Applied Biosystem’s SOliD sequencing platform 

(https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=60

4416, 25.05.2008). 

 

 
Figure 6. A scheme depicting the process of sequencing by ligation (Bentley, 2006). Arrows are the anchor 
primers, to which, step-by-step, labelled oligonucleotides are ligated. 

 

1.2.5. Nanopore sequencing 

 

 Nanopore sequencing is based on measuring changes in electric impedance in the 

nanopore as negatively charged target DNA is moved through by the use of an electric field 

(Figure 7). Each base or a combination of successive bases that enter the ~1.5nm wide 

biological or synthetic nanopore obstruct the flow of ions in that pore and the resulting 

electric fingerprint can be used to determine DNA sequence. 

Although nanopore sequencing is a theoretically promising method; potentially 

yielding long reads, requiring but a single template molecule and needing little reagents, its 

success has been limited. Main problems are the construction of stable pores (Rhee and 

Burns, 2007) and preventing the DNA from wobbling back and forth as it traverses the pore 

(Service, 2006). 
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Figure 7. A scheme depicting the process of nanopore sequencing (Bentley, 2006). Nucleotides are identified by 
changes in the electric impedance of the nanopore as DNA is pulled through the pore by an electric field. 

 

 

1.3. Resequencing probe design issues 

 

Oligonucleotide probes serve as key components in several resequencing technologies 

by priming polymerase reactions or detecting bases by mismatch discrimination. 

Consequently, the performance of these technologies is dependent on the proper design of 

probes. It is especially relevant to methods that use large sets of distinct probes, in contrast to 

methods using few universal probes. The former methods, e.g. GenoVoxx  

(http://www.genovoxx.de) and ArraySBS (http://www.ist-

world.org/ProjectDetails.aspx?ProjectId=c369da46689e4058a1994cbc7a0bc6b2, 

25.05.2008), are generally designed to resequence specific genes or other areas of interest 

while the latter are geared towards whole-genome resequencing (e.g. Illumina Genome 

Analyser and Helicos Genetic Analysis System).  

The nucleotide composition of probes affects both the hybridization and enzymatic 

efficiencies, which in turn affect experimental signal-to-noise ratios and, ultimately, the 

success or failure of base calls (Yuryev et al., 2004). Therefore, a careful design of probes is 

needed to ensure the success of resequencing experiments involving such oligonucleotides.  

An effective probe interacts only with its intended target and yields a signal, which 

can be distinguished from background noise. To achieve that, a probe must not form dimers 

with itself or with other probes and it must not form secondary structures or hybridise to 

unintended regions of template DNA (Kaderali et al., 2003). Also, the probe-target duplex 

must be easily accessible to DNA polymerase, which requires that the 3’ end of the probe 

forms a stable duplex over at least eight bases (Rychlik, 1995) and is composed of specific 

nucleotides (Onodera and Melcher, 2004). Failing to meet these criteria can lead to either the 
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false priming of probes (i.e. yielding a signal unrelated to the investigated nucleotide) or 

cause the attenuation of true signals. 

In order to design high-quality probes, the characteristics responsible for probe 

efficiency must be identified, and used to upgrade existing probe selection principles. The 

challenges lie in discovering those characteristics and accurately assessing their significance. 

Some researches have focused on specific factors to improve their probe or primer 

selection criteria, such as probe 3’ end binding energies (Miura et al., 2005), probe 3’ end 

nucleotide combinations (Onodera and Melcher, 2004) and possible number of non-specific 

binding sites and secondary structures, calculated in different ways (Rubin and Levy, 1996; 

Kaderali and Schliep, 2002); others have examined the effects of several factors together by 

using fuzzy logics (Haas et al., 1998) or statistical models (Yuryev et al., 2002; Benita et al., 

2003; Andreson et al., 2008). 

This illustrates the fact that there are many choices to be made in improving primer 

design, starting from picking the most promising factors up to using proper tools to assess 

their importance in final decision-making. 

According to Yuryev, the use of statistical models is the best approach to successful 

design of probes for any given application, as it allows easy tuning of existing probe selection 

principles (i.e. re-evaluating the significance of various probe properties) for a specific 

platform or developing new criteria as long as the fundamental working principles of these 

applications are similar (Yuryev et al., 2002).  

Straightforwardly speaking, statistical models, based on information about the system 

behaviour in certain conditions, help to predict how it performs in other conditions. They can 

be used to analyse which probe properties, and to what extent, are correlated with their 

success or failure in previous experiments. As the result, a statistical model, a formula, is 

created. The model can be used to predict the “goodness” of future probes by knowing the 

numeric values of all relevant probe properties.  

Although the statistical models present a powerful toolkit for researchers, great care 

must be taken in choosing appropriate statistical procedures and properly preparing the data 

and interpreting the results. These procedures usually make specific assumptions about the 

data and if these are not met, e.g. because of lack of background information about data, the 

results may become biased and lead to wrong conclusions.  

Additionally, despite their versatility and the relative ease by which they can 

accommodate changes in data and factor sets, when the platform, for which the solution is 

tailored, is replaced with a significantly different one, the needed data preparation, model 

testing and factor selection steps might have to be modified to an extent where it becomes 
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preferable to develop an alternative approach altogether. Also, there are no single universal 

model making rules to follow and it is the job of the researches to customise their analysis and 

make educated guesses to create models that best describe a particular system. 

Consequently, in our study we tailored our own approach for designing better probes 

for a four-colour SBS method, using statistical models, along with custom data preparation, 

factor selection and model testing procedures. 
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II PRACTICAL PART 

 

2. Aims of the study 

 

The aim of the practical part of this study was to develop a methodology for predicting 

the quality of resequencing probes for use in four-colour sequencing-by-synthesis platform 

that employs large sets of probes to directly sequence specific target sequences; and integrate 

it into a probe design software. This task was divided into the following sub-goals: 1) find 

ways to normalise microarray signals for use in data analysis; 2) develop a statistical 

methodology for predicting the quality of resequencing probes; 3) find the best set of factors 

to predict the quality of APEX (Kurg et al., 2000) genotyping probes; 4) implement the 

resulting statistical models into probe design software. 

The ability to predict probes’ quality allows us to select probes that will more likely 

work well. That would reduce the need for trial-and-error experiments with several candidate 

probes – time-consuming and costly procedures. In addition, if we have to use probes that 

have undesirable qualities, e.g. the tendency of forming dimers, we can take the predicted 

quality of probes into account when interpreting the results. 

We measured the quality of probes by their call rate and fluorescent signal intensity, 

acquired from microarray experiments. Call rate is the percentage of those experiments where 

the probe has been known to work correctly.  

While call rate reflects probe quality the best, its use in statistical models is difficult 

because it has most of values near 100%. As a supporting predictor of probe quality, we chose 

fluorescent signal intensity. The predicted signal intensity indicates whether the probe’s signal 

will likely be high enough to be distinguishable from the background noise.  

As shown in Figure 8, there is no clear correlation between signal intensity and call 

rate, meaning that they do not duplicate each other’s information and both have the potential 

to be independently used for probe quality prediction. 
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Figure 8. Scatter plot showing the correlation between transformed signal intensity (LSI) on the x-axis and 
transformed call rate (ACR) on the y-axis; the transformations are explained in section 3.2. Corresponding R2 is 
0.19.  

 

For prediction of the probe quality, we used statistical methods implemented in SAS 

software package release 9.1.3 (SAS Institute Inc. 2004, Cary, NC, USA), mainly the GLM 

(General Linear Models Analysis) and MIXED (Mixed Linear Analysis of Variance) 

procedures which help to find relationships between characteristics of probe sequence 

properties and the call rate and signal intensity.  

 

3.  Data used in analyses 

 

Data for the analysis was obtained from previous experiments with Asper Biotech’ 

(Asper Biotech Ltd., Tartu, Estonia) APEX platform – a four-colour fluorescent genotyping 

system. Analysed data was collected from three separate sets, designated correspondingly 

ABCR170, ABCR100 and ARCAGE. These genotyping experiments were a suitable source of 

data for the development of SBS probe quality prediction methods because molecular 

mechanics are similar in these systems. Even though the actual relationships between probe 

sequence and quality may differ, the statistical approach for discovering these relationships 

will likely remain the same. 

Each dataset consisted of 96-243 microarrays, carrying several hundred distinct probes 

that were spotted in duplicates and hybridised with target DNAs (Table 1). Every dataset also 

included one or more control microarrays where no target-DNA was present, for identifying 

probes that gave false-positive signals by hybridising onto and extending itself. 

For every probe on every microarray we had the following information: 1) probe 

sequence (including notes if a probe contained modified nucleotides); 2) fluorescent signal 

intensities produced by the probe in four separate channels (A, C, G, T; measured in RFUs – 

relative fluorescent units); 3) genotype detected by the probe (all genotypes were manually 
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determined by experts); 4) expert opinion on the probe’s effectiveness (some probe that 

worked badly were marked as such).  

 
Table 1. The total amount of data available to us. Every probe on each array detected a genotype. There were 
eight signals per genotype – all probes were in duplicates and each probe gave signals in four different channels. 
‘*’ relates to ABCR170 and ABCR100 datasets that used mostly the same probes, thus the total number of 
different probes is less. 

 ABCR170 ABCR100 ARCAGE TOTAL 

MICROARRAYS 243 101 96 441 

PROBES 890 901 463 2254 (1364*) 

GENOTYPES 216270 91001 44448 351719 

SIGNALS 1730160 728008 355584 2813752 

 

3.1. Selecting reliable data 

 

 To make further analysis easier to interpret and to find clearer statistical relationships, 

we removed unreliable data from our original datasets, including microarrays, probes and 

single spots. See Table 2 for details about the amount of excluded data. Data was filtered out 

according to the following criteria: 

1. Missing expert-determined genotypes – arrays, probes and single spots for which 

expert-confirmed genotype was unavailable, were excluded. 

2. Heterozygous genotypes – in heterozygous states signals in independent channels have 

lower intensities than in homozygous state, since less target DNA is available for 

either channel. As there are not many heterozygous signals and they might make 

signal intensity prediction more uncertain, they were removed from analysis. 

3. Probes for which its duplicated spots had highly different signal intensities were 

excluded. Signals were considered highly different when (a) their intensities differed 

by more than two times and both had more than ten RFUs (relative fluorescent units) 

or (b) their intensities differed by more than ten RFUs and at least one of the signals 

had the intensity of ten or less RFUs. 

4. Probes containing chemically modified nucleotides were excluded. 

5. Probes yielding high signals in control-arrays – if a probe gave a signal greater than 20 

RFUs in any of the four channels of any control-array, it was considered prone to self-

priming and was excluded. 

6. Probes marked unreliable by experts were dropped. 

7. Database conflicts – in some cases array and probe data that was originally kept in 

different databases could not be confidently matched, because their ID-s had been 

tampered with. 
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Table 2. The total amount of data excluded from analysis or how much is left. “*” means, that exact information 
is not available – single removed genotypes and signals are not counted. 
 

DATA REMOVED FROM ANALYSIS 

 ABCR170 ABCR100 ARCAGE TOTAL TOTAL LEFT 

ARRAYS 73 (30%) 0 0 73 (10%) 368 (90%) 

PROBES 472 (53%) 418 (46%) 33 (7%) 923 (41%) 1331 (59%) 

GENOTYPES 145210 (63%)* 42218 (46%)* 3168 (7%)* 190596 (54%)* 161123 (46%) 

SIGNALS 1151680 (63%)* 337744 (46%)* 25344 (7%)* 1514768 (54%)* 1298984 (46%) 

 

Further, plotting the call rate and signal intensity values together revealed that in our 

dataset, there are several probes with very low average signal intensity but a very high call 

rate that formed a distinct group (Figure 9). These probes were considered unreliable as they 

clearly separate from others probes on the plot and having a high call rate with very low 

signal intensity is counter-intuitive. Probably some other information was used for making 

these calls, e.g. probe information from the other strand. Consequently, all probes with low 

average signal intensity (LSI < -3) were also removed from further analysis.  

 

 

Figure 9. Scatter plot with log-transformed signal intensity (LSI) on the x-axis and arcsin-transformed call rate 
(ACR) on the y-axis (the transformations are described in section 3.2). Probes with low LSI and high ACR form 
a distinct group on the plot. These are considered noise and therefore all probes with LSI < -3 were removed 
from further analysis. 

 

3.2. Calculation and transformation of call rate and signal intensity 

 

Prior to statistical analysis, independent factors were defined and calculated for each 

probe. Probe’s call rate (abbreviated as CR) was calculated as the percentage of arrays where 

the probe yielded a successful (according to lab specialists) genotype call, out of all arrays 

where the probe was present: 
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100
presentwasprobethewherearraysofnumber

workedprobethewherearraysofnumber
CR ×=  

 

CR is an estimate of the probability that genotype will be determined correctly. 

Theoretically, it is a random variable multiple to a variable having binomial distribution. In 

the following analyses, we use statistical methods where the normal distribution is preferred 

and for this, we apply the arcsine transformation to CR to make its distribution more normal:  

 









=

100

CR
arcsinACR  

This transformation decreases dependence of CR variance on CR mean value, but the 

distribution of ACR converges to a normal distribution with a reasonable speed only when the 

probability of correct call is close to ½. Because we have call rates close to 100% (Figure 10), 

the normality cannot be achieved. 

Although there is some effect, the arcsine transformation of CR did not improve the 

distribution greatly, as it is impossible to normalise distributions that have most of the values 

near one (Figure 11).  

 

 
Figure 10. The distribution of call rates before the normalisation.  

 

 
Figure 11. The distribution of call rates after the normalisation by applying the arcsine 
transformation.  
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Probe’s signal intensity (SI), was calculated as the average signal intensity over all 

arrays where the probe had a signal in the channel that corresponded to the expert-called 

genotype (1). All signals had been previously normalised (see Section 4.1).  

 

  (1) 

  

 

Distribution of SI is clearly asymmetric (Figure 12) but after the logarithmic 

transformation (with base of 2) its distribution becomes almost normal (Figure 13).  

 

                                (2) 

 

 
Figure 12. The distribution of non-logarithmic signal intensities (SI) of all probes in our data. 

 

 
Figure 13. The distribution of logarithmic signal intensities (LSI) of all probes in our data. 

 

 

4. Results 

 

Using pre-filtered reliable data from APEX genotyping experiments we found a 

method to normalise microarray signals, tailored a statistical approach to predicting 

resequencing probe quality, found the best model to predict the quality of APEX genotyping 

probes, tested its universality and implemented the model into a probe designing software. 

100
signalagaveprobethewherearraysofnumber

arraysallfrom sintensitiesignalnormalisedsprobe'ofsum
SI ×=

( )SI/100logLSI 2=
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4.1. Normalisation of microarray signals 

 

To make signal intensities read from different microarrays and different channels more 

comparable, it has to be ensured that different microarrays and the type of channel where the 

signal was produced have no disturbing effect on the signal intensity.  

 Signal intensity distributions, calculated for each channels separately, using the 

median signal intensities of every microarrays, revealed that the intensities vary greatly 

between microarrays as well as between different channels (Figure 14). For these calculations 

only the previously filtered reliable data, including no heterozygous signals, was used. 

Median was used instead of arithmetic mean to reduce the effect of particularly strong or 

weak signals (outliers). For example, signals generated by the incorporation of cytosine were 

frequently over two times lower than those of other nucleotides; and the median signals of 

different microarrays range from as low as six RFU-s to more than 100 RFU-s. Therefore, 

signals had to be normalised to make them usable in further analyses.  

 

Distribution of "A" channel medians  (median = 36)
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Distribution of "C" channel medians  (median = 15)
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Distribution of "G" channel medians  (median = 37)
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Figure 14. Four tables showing the distribution of median signals of all ABCR170 microarrays in each of four 
channels.  

 

 

The normalisation of signals was achieved by dividing each signal in a specific 

channel on an array by a percentile of all signals of the same channel on that array. As can be 

seen from Table 3, if no normalisation was used, then 23% of the signal variance was solely 

the result of different microarrays having different signal levels. By using the 90th percentile 

for normalisation, the effect of arrays to signals was reduced to 0.16% of total variance, 

eliminating it almost entirely. The 90th percentile was chosen amongst the 70th, 75th, 80th, 85th, 
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90th and 95th percentiles into the final normalisation formula, as it reduced microarray effect 

on probe signals the most: 

 

Y channel X,array  of signal percentile90th 

Y channel X,array  of signal raw
signal normalised =  

 

Percentiles less than 70 could not be used since most of the signals in every channel of 

a microarray are zeroes. 

It should be noted that the 90th percentile signal was calculated using each and every 

signal on that array, not only the ones that we preserved as reliable. This is because we want 

this normalisation method to be usable and work well in the case when we do not have any 

expert’s notes, indicating which signals can be treated as true positives. In addition, the 90th 

percentile, like the median, should be relatively free from the effects of particularly high or 

low signals. 

 

Table 3. This table shows how much of the probe signal variance is caused by microarrays after 
performing various normalisations. The results were obtained by SAS’s MIXED procedure, which 
performs mixed-type analysis of variance. 
 

NORMALISATION 

METHOD 

MICROARRAY COMPONENT 

OF SIGNAL VARIANCE 

None 22.97 % 
70th percentile 5.77 % 
75th percentile 2.89 % 
80th percentile 1.65 % 
85th percentile 0.53 % 
90th percentile 0.16 % 
95th percentile 0.40 % 

 

Figure 15 and Figure 16 show the distribution of all signals of all arrays in four 

different channels before and after normalisation step, respectively. Here, the distributions 

individual probe signals are provided, instead of array medians, as using medians can result in 

loss of information. 
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Figure 15. Distribution of signals of all ABCR170 microarrays in each of four channels before normalisation 
Very high signals (> 200 RFU-s) are not shown on these graphs to enhance appearance.  
 
 

  

  
Figure 16. Distribution of median signals of different arrays in four different channels after normalisation by the 
90th percentile. Very high signals (greater than 5.0) are not shown on these graphs to enhance appearance. Only 
data from ABCR170 dataset was used here.  

 

4.1.1. Spatial signal intensity patterns 

 

We also checked for spatial signal intensity patterns on the microarray to see whether 

some locations on the microarray glass had frequently strong or weak signals and if spatial 

signal normalisation was required. This could arise for example when target DNA is unevenly 

distributed on the surface of the array or if some spotting needles spot concentrations of 

probes differently. In this case, the raw signal intensities from specific areas of microarrays 

should be normalised to compensate for the above-mentioned technical defects. To analyse 

this we created several ‘pseudoarray’ images where stronger than median signal intensities 

were highlighted – green squares were two times higher and red square four times higher than 

the median of current chip and channel (Figure 17). Two different colours were used in case 

the potential signal patterns only emerged at certain intensity levels. However, visual 

examination of the pseudoarrays didn’t reveal such patterns and no further analysis was 

performed.  
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Figure 17. Four selected pseudoarray images that were created to search for spatial signal intensity 
patterns. Each image displays the signal layout of an array from the ABCR170 set. Each square denotes 
one spot on microarray. Light red squares have signal intensity higher than two times of the array median 
and dark red squares have intensity higher than four times of the array median. Summed intensities over 
all channels are shown. 

 

4.2. Development of a statistical methodology for probe quality prediction 

 

To predict oligonucleotide probe quality we used statistical methods that can be used 

to find relationships between probes' call rates, signal intensities and the nucleotide 

composition of their sequences, which make all the probes different from each other. For that 

task, general linear analysis, realised in SAS GLM procedure, was selected. This procedure 

can also perform the classical analysis of variance (ANOVA) where all the factors are of 

categorical type, and the pure classical regression analysis, where all the factors are 

numerical. Such analysis gives information about how well one or more independent variables 

that can be calculated from a probe's sequence (called hereafter the sequence-based factors or 

SB-factors) can predict the dependent variables – call rate and signal intensity of the probe.  

 GLM is suitable for our analysis as it can use both numerical and categorical variables 

for prediction and data does not have to be balanced – i.e. the number of observations for all 

levels of a categorical factor does not need to be equal.  

  The quality of resulting models will be characterised by its prediction power, 

measured in R2 and p-values, which indicate the level of confidence that the model as a whole 

and each independent variable (factor) in it is actually significant for the prediction of probe 
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quality. We set the significance level α for all analyses equal to 0.001; relationships having 

greater p-value than α were considered unproven as they may have arisen by chance. 

 

4.3. Search for the best set of factors for the prediction of call rate and signal intensity 

 

Two groups of factors were used for the prediction of probe quality: sequence-based 

factors (SB-factors) and auxiliary factors. The SB-factors are calculated directly from the 

probe’s sequence and can therefore be used to predict probe quality before real experiments 

are made. The auxiliary factors are calculated using data other than probe’s sequence and they 

are known only after the experiments and therefore cannot be used for predicting the probe 

quality. They can be used for explaining the probe quality and, consequently, to locate other 

components of the sequencing system, which could be improved to ensure that probes work 

better – e.g. the efficiency of PCR reactions prior to sequencing. 

Multiple SB-factor candidates were calculated and their effect on both, ACR and LSI 

was tested using general linear analysis. For numerical factors, e.g. dG (the Gibbs free energy 

of probe-template interaction), the effects of up to the 3rd order polynomial were tested. The 

descriptions and effects of tested factors on both ACR and LSI are listed in Supplementary 

Table 1 (SB-factors) and Supplementary Table 2 (auxiliary factors). The list of most 

significant factors is provided below separately, as part of the final models. 

Out of all SB-factors, the optimal set was chosen separately for call rate and signal 

intensity prediction.  An optimal set is one that has minimal number of factors, while 

retaining maximum prediction power. Not all factors are required for maximum prediction 

power, because many of them are not independent having strong correlation with others. 

A selection of factors is necessary for three reasons: firstly, a model with fewer factors 

can be calculated faster; secondly, simpler models are easier to understand and interpret; 

thirdly, having too many factors in a model compared to the amount data may result in over-

fitting – i.e. reported R2 will be greater than it actually is. For example, when all of our SB-

factors were used for LSI prediction at once, the R2 was reported as 100%, which clearly does 

not reflect true prediction power of the model.  

For finding the optimal set of factors, a custom model-making algorithm had to be 

devised, as there are no standard methods for the data and factors that we used.  

We have tailored a stepwise model-making algorithm that seeks out the factor with the 

greatest effect and then systematically adds new factors that provide the most additional 

information. Statistical analysis was performed by using general linear type-1 analyses (SS1). 

SS1 gives a p-value for every factor in the factor set, indicating whether this factor gives 
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additional information to the model, when all preceding factors have already been taken into 

account. This guarantees that every subsequent factor we include into the model adds to our 

prediction power. Initially, all factors were additionally tested with type-2 variance analysis 

(SS2), which evaluates the effect of every factor by removing it and analysing whether this 

decreases the model quality. However, for all models where SS1 p-values were below 

threshold, also SS2 p-values were below threshold, indicating that such double-checking was 

not necessary. Overview of the algorithm is described in Table 4. This procedure was 

automated by a PERL script, which took factors from a preset list, sent them to SAS software 

for analysis, and based on returned data, sent a new set of factors, until the overall model 

could not be improved anymore. 

Alternatively, to the step-wise factor additions, we tried analysing all permutations of 

factors, where the positions of the factors in the model were also shuffled. Since by using SS1 

the factor p-values are position-dependent, a scenario could arise where the highest R2 scoring 

factor would render two other factors statistically insignificant, which together on their own 

could have a greater R2 and still have significant p-values. The ACR models obtained by this 

method showed that this method could give models with greater R2, but only slightly. Since 

this method was also very time-consuming (calculations for ACR took several days; LSI 

analyses run for more than one  week and were cancelled) it was not investigated any further 

and the previously described method was adapted instead.   

 

Table 4. Overview of the final factor selection algorithm. 

OVERVIEW OF THE FINAL FACTOR SELECTION ALGORITHM 

1. Cycle through all factors available for analysis. 
 

2. Add each factor temporarily into the model 
 

3. Measure their R2 and p-values. 
 

4. Select the factor with the best R2, where p-value was at most 0.001. 
 

5. Add that factor permanently into the model and remove it from further cycles. 
 

6. Repeat from step 1, until there are no more factors with p-value ≤ 0.001. 

 

This algorithm was used to find the best set of factors for both LSI and ACR prediction. 

The resulting LSI model had six factors and could predict 28% of LSI; ACR model had three 

factors and could predict 5.2% of ACR (Table 5). Figures 18 and 19 illustrate the correlation 

between the predicted values and experimental values for ACR and LSI models, respectively. 
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Table 5.  Sets of SB-factors that explain the variability of LSI and ACR the most. The R2 describes the model’s 
total prediction power. Descriptions of the factors are provided in Supplementary Table 1. 

MODEL BUILT USING SB-FACTORS ONLY 

DEPENDENT VARIABLE MODEL R
2
 DEPENDENT VARIABLE MODEL R

2
 

LSI 28% ACR 5.2% 

POS FACTORS P-VALUE POS FACTORS P-VALUE 

1. N1N2 <.0001 1. dG13 <.0001 

2. N4N5 <.0001 2. any×any×any <.0001 

3. dG15 <.0001 3. dG13×dG13 0.0005 

4. N3N6 0.0001    

5. dG15×dG15 <.0001    

6. any×any×any <.0001    

 
 

 
Figure 18. A scatterplot visualising our model’s ability to predict probe signal from its sequence. On the x-axis 
there are experimentally measured LSI-s, and on the y-axis there are LSI-s predicted by our model. Black line is 
the fit curve (R2 = 0.2840). The colours of the dots denote probes’ ACR-s, where read mean the highest and blue 
the lowest ACR-s. 
 

 
Figure 19. A scatterplot visualising our model’s ability to predict call rate from its sequence. On the x-axis there 
are experimentally measured ACR-s, and on the y-axis there are ACR-s predicted by our model. Black line is the 
fit curve (R2 = 0.0523). ACR of 1.57 is equal to call rate of 100%. The colours of the dots denote probes’ LSI-s, 
where red means the highest and blue the lowest LSI-s. 
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Two more models were created to estimate our ability to explain the total variance of 

call rate and signal intensity. Here in addition to the SB-factors, the auxiliary factors were also 

included. These models have significantly better correlation with ACR and LSI, 31% and 

45% respectively (Table 6). Comparison with Table 5 indicates that about 26% of ACR and 

17% of LSI variability comes from PCR and sample preparation steps. 

 

Table 6. This table shows the sets of factors that explain the variability of LSI and ACR the most. The related 
models are not usable for prediction as the levels of auxiliary factors like PCR and ‘sample’ cannot be calculated 
for future probes. Descriptions of the factors are provided in Supplementary Tables 1 and 2. 

MODEL BUILT USING ALL FACTORS 

DEPENDENT VARIABLE MODEL R
2
 DEPENDENT VARIABLE MODEL R

2
 

LSI 45% ACR 31% 

POS FACTORS P-VALUE POS FACTORS P-VALUE 

1. N1N2 <.0001 1. PCR <.0001 

2. PCR <.0001 2. sample <.0001 

3. N4N5 <.0001 3. dG13 <.0001 

4. N3N6 <.0001 4. dG13×dG13 <.0001 

5. dG16 <.0001 5. Crank×Crank×Crank 0.0001 

6. dG16×dG16  <.0001    

7. end1×end1×end1 <.0001    

8. dG3×dG3×dG3 0.0002    

 

To further analyse the selected factors we created graphs that describe their effect on 

the dependent variables in detail (Suppl. Figure 1 and 2). The graphs show that dG values 

have optimums, near -22 kcal/mol and -19 kcal/mol for dg15 and dg13, respectively. The 

‘any’ factor has positive correlation with both call rate and signal intensity, which is expected, 

as probes with very negative ‘any’ values should form dimers, which yield no signals. N1N2, 

N4N5 factor graphs (Suppl. Figure 1) show that probes containing C and G nucleotides 

generally tend to yield higher signals than those containing A and T nucleotides, with AA and 

TT combinations yielding the lowest signals  

In addition, the distribution of every factor used in our models was compared to their 

distribution in a randomly generated dataset of 10000 randomly chosen genomic probes 

(Suppl. Figure 3). Every factor can only reliably predict the quality of future probes if their 

values are in the same intervals as the ones they were trained on – i.e. our dataset. As can be 

seen from Supplementary Figure 3, the distribution of factors in our dataset is similar to those 

of random genomic probes. The only notable difference is the higher percentage of C and G 

nucleotides in our probes, compared to the random genomic probes, but this likely because 

our probes are designed specifically on genes, which are known for their greater GC content. 
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4.4. Model testing 

 

To verify that the factors selected by our statistical methodology are not strictly 

specific to one dataset but can be also used in case of other datasets, we split our original data 

into two subsets, used one for model making and then compared the model’s prediction power 

by applying it on both subsets. 

First, the data was split into two subsets: A (ABCR170 and ARCAGE data) and B 

(ABCR100 data). Then, using only data of subset B, we estimated a new set of factors and the 

corresponding model that predicts probe quality the best in B. After that, this model was 

applied to both subsets A and B and we measured the mean squared errors (MSE), which 

shows the mean deviance of experimental values from predicted values, and found their ratio 

for both ACR and LSI prediction (RatioACR and RatioLSI, correspondingly): 

 

∑ −= 2) valuepredicted valuealexperiment(
freedom of degrees

1
MSE  

89.0MSE/MSERatio ACR A,ACR B,ACR ==  

98.0MSE/MSERatio LSI A,LSI B,LSI ==  

 

For both ACR and LSI, the ratio was near one (0.89 and 0.98 respectively) meaning 

that the model found by our method worked almost equally good on both datasets and was not 

strictly specific to the data from which it was estimated (calculated) and that it can be used 

more universally. 

 

4.5. Implementation of the probe design algorithm 

 

As a part of this study, a resequencing probe design software, called SBS Designer, 

was realised in PERL and PHP programming languages for the practical implementation of 

our probe quality prediction models and improvement of previous software. So far only the 

call rate prediction model has been included, since the best way to use signal intensity for 

probe selection is under consideration. 

Here we give a short description of the program’s input, output and probe selection 

algorithm. 

SBS Designer can either evaluate the quality of existing probes or design new probes 

for a DNA sequence (Figure 20). The sequence can be provided in three different ways: 
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entered manually into web text-fields; loaded from a text file (in FASTA format); or searched 

for by using chromosome coordinates or gene ID. 

 

 
Figure 20. Screenshot of SBS Designer main page where one can choose to analyse existing probes or have 
the program design new ones, using three different types of input. 

 

As the result, the programme will produce a list of probes that can be used to 

resequence the given DNA region, accompanied by statistics, such as predicted call rate (that 

is calculated using the ACR prediction model), melting temperature (Tm), length, genomic 

positions, etc (Figure 21). Also a visualisation of the DNA region will be provided that will 

show which nucleotides have the requested coverage (i.e. how many probes will sequence that 

nucleotide) and which don’t, along with reasons why enough probes couldn’t be designed for 

that region (e.g. the area contained repeats or probe’s predicted call rate was too low). 

 

 
 

Figure 21. Screenshot depicting part of a results page, which shows the probes that our algorithm has 
designed for the resequencing of a DNA region (region not shown). Probes coloured in yellow have some 
characteristics below recommended thresholds but are still considered eligible for sequencing.  
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The probe design algorithm works by first designing probe for all nucleotide over the 

input DNA region. The probes can either be of fixed length (minimum is 15) or have uniform 

melting temperatures, in which case such probe length will be automatically chosen that is 

closest to the desired Tm value. Probes can be designed on both strands of DNA or only for 

either one. Then all unusable probes are filtered out according to following criteria: too low 

predicted call rate (< 95 by default), high ‘dust’ score (> 20; see Suppl. Table 1 for details on 

‘dust’ score), high CFS value (>50; see Suppl. Table 1 for details on CFS score), probe is on 

common repeats (optional), probe contains SNPs (optional). After the filtration the 

sequencing ranges for every remaining probe are calculated – i.e. how many nucleotides they 

can sequence. The range can either be set to a fixed number by the user, or calculated by a 

formula from the probe’s call rate. Finally, starting from the 5’ end of input DNA region, the 

algorithm will then step-by-step remove all probes, while ensuring that the coverage of all 

nucleotides in its range will remain above threshold. The remaining probes comprise to final 

set of probes designed for sequencing the input DNA region. This algorithm is subject to 

future improvements as it currently doesn’t guarantee the selection of the optimal set of 

probes. 

SBS Designer is currently in beta stage and can be previewed at 

http://bioinfo.ut.ee/sbsdesigner.   

 

5. Discussion 

 

The ability of our ACR and LSI models to predict the quality of probes is rather 

modest, having correlations of 5.2% (for ACR) and 28% (for LSI) between the experimental 

and predicted values of our APEX data. This reflects the fact that probe sequence is only a 

minor factor affecting microarray results and other factors (success of PCR reaction and 

sample preparation efficiency) have higher effect on the results. However, applying our 

statistical models in addition to existing probe choice principles should still improve the 

microarray results – the gain may be slight, but overlooking it would be unjustified. 

The lack of call rate prediction power can be explained by the fact that it has rather 

small variance in our data – over 50% of probes have a call rate of 100 and over 90% have 

call rate above 90 (Figure 10; Section 3.2). With so little variance in the data, it is hard to find 

good relationships between probe sequence and call rate. The lack of call rate variance is 

probably due to APEX genotyping probes having been optimised over time, whereby poor-

quality probes were removed.  
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Signal intensity prediction can be used to homogenise the probe signal strengths on 

microarrays or employed as a score for quality estimation. For instance, if several alternatives 

are available, the probes with estimated signal strengths of less than -3 could be removed or 

replaced with other probes, since signals this weak usually do not result in a good call rate. 

However, this threshold must not be used too stringently, as many potentially good probes 

could be mistakenly discarded along with bad candidates, since the signal prediction power 

was not very high. 

While the 3’ end nucleotide combinations (factors N1N2, N4N5, N3N6) were the 

strongest predictors of signal intensity and their importance regarding polymerase reactions 

has been noted previously, we propose that their effects need further confirmation. Firstly, it 

is hard explain the biological relevance of these specific combinations and their states. 

Secondly, when we removed some of these factors, other nucleotide combinations or single 

nucleotides emerged as important – but to a lesser extent. Thirdly, Andreson and colleagues 

also investigated primer 3’ bases in regard to PCR failure rate and found that while they did 

exhibit some correlation, their use quickly resulted in model over-fitting, and were 

consequently removed from final analysis (Andreson et al., 2008). We however, chose to keep 

them, as we had no strong statistical grounds for their removal. Perhaps larger datasets and 

more thorough model testing would reveal if they are artificial factors or not. 

The ‘dust’ and CFS factors, although considered important, did not have statistical 

relationships with probe quality in our data. This is probably because all probes used in APEX 

genotyping had been previously filtered in regards of ‘dust’ and CFS values to an extent that 

they no longer had any effect on call rate or signal intensity. Such filtration was confirmed by 

comparing ‘dust’ and CFS distribution in our dataset with those of 10000 random genomic 

probes (Suppl. Figure 4). In addition, when implementing our prediction models the same 

filtration has to be redone on all probes, for our models to be valid.  

In addition to SB-factors, the effects of the auxiliary factors, e.g. PCR and sample, 

were also measured. Knowing their effects was not necessary for this study as they cannot be 

used for prediction of probe quality, but can be used to explain additional sources of variation 

afterwards.  

The effect of PCR turned out to be significant for both call rate and signal intensity 

(15% and 11% correlation respectively), whilst the sample factor affected only call rate 

(18%). It confirms the fact that the PCR step is one of the most crucial elements of 

genotyping / resequencing systems, also reported by others (Kaderali et al., 2003), and further 

efforts should be made to select good PCR primers to ensure the success of the whole system.  
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The great impact of the sample factor on call rate indicates that something was done 

systematically differently when the experiments of the three array sets were conducted; by 

identifying and controlling those conditions, call rate could be improved by another amount 

that is comparable the effect of PCR. That effect was verified by eliminating the effects of 

PCR and using only ABCR170 and ABCR100 datasets, which have mostly the same probes: 

the relationship between sample and ACR remained above 11%. 

Finally, regardless of the prediction power of current models, it should be noted that 

these were tailored specifically for the APEX method, but our methodology allows these 

models to be easily recalibrated for other systems when provided with corresponding 

experimental data.  

 

SUMMARY 

 

The aim of this study was to develop a methodology for predicting probe quality from 

its sequence. The analyses were performed using data from APEX genotyping experiments 

that employ four-channel fluorescent detection.  

 As the result, specific procedures were developed for signal intensity normalisation, 

statistical model creation, factor selection, and model testing. 

 A 90th percentile-based normalisation technique was devised that reduced array-

specific signal intensity variation from 23% to 0.16% of total variation.  

 The prediction of probe quality reflecting variables, “call rate” and “signal intensity,” 

was accomplished by tailoring an automated model making algorithm, which uses general 

linear analyses to find the best set of probe quality predicting factors out of more than 50 

variables, which were calculated from probe sequences. The final models had 28% and 5.2% 

correlation with signal intensity and call rate, respectively. However, a total of 45% and 31% 

of signal intensity and call rate could be explained by including other known experiment-

related factors, which are not related to probe sequence and thus cannot be used for probe 

selection. 

Cross-validation of the model was performed using data subsets, which confirmed that 

the models are not strictly specific to our data. 

Finally, the call rate prediction model was implemented into the probe selection 

algorithm of our probe design software. 
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Metoodika resekveneerimisproovide kvaliteedi ennustamiseks 

Taavi Võsumaa 

Kokkuvõte 

 

Antud töö eesmärgiks oli välja töötada metoodika resekveneerimisproovide kvaliteedi 

ennustamiseks.  

Resekveneerimine on oluline organismide geneetilise mitmekesisuse uurimiseks ja 

haigusgeenide identifitseerimiseks. Paljude resekveneerimistehnoloogiate lahutamatuks 

komponendiks on DNA proovid, mille õige disain on vajalik hea tööedukuse tagamiseks. 

Kuigi proovide disaini on palju uuritud, on varasemate autorite tööde tulemused ning 

tänapäeva resekveneerimismeetodite tööpõhimõtted üksteisest piisavalt erinevad, et oleks 

võimalik piirduda üldistatud reeglitega. Seetõttu tuleb proovidisaini printsiipe kohandada 

antud platvormi tarbeks ning vajadusel lisada uusi kriteeriumeid. Üks paremaid vahendeid 

disainireeglite väljatöötamiseks on statistilised mudelid ja neid on kasutatud ka antud töös. 

Töö tulemusena töötati välja protseduurid DNA proovide call rate’i ja signaali 

tugevuse ennustamiseks nelja kanaliga sünteesil põhineva resekveneerimise tarbeks: 

signaaliintensiivsuste normaliseerimine, statistilite meetodite kasutus, parimate kvaliteeti 

mõjutavate faktorite valik ja mudeli testimine. Lisaks koostati loodud mudelit rakendav 

tarkvara. 

Signaaliintensiivsused normaliseeriti algandmete 90. protsentiili suhtes, mille 

tulemusel vähenes kiibist sõltuv signaali varieeruvus 23 protsendilt 0.16 protsendini kogu 

varieeruvusest. 

Proovide call rate’i ja signaali tugevuse ennustamiseks loodi automaatne 

mudelikoostamise algoritm, mis valib üldist lineaarset analüüsi kasutades välja rohkem kui 50 

faktorikandidaadi hulgast parima komplekti. Lõplike mudelite korrelatsioon signaali tugevuse 

ja call rate’i-ga oli vastavalt 28% ja 5.2%. Võttes kasutusele ka nn. kontrollimatud faktorid, 

mida proovide disainimisel kasutada ei saa, suudeti seletada vastavalt 45% ja 31% signaali 

tugevuse ja call rate’i varieeruvusest.  

Mudeleid testiti andmete erinevaid alamhulki kasutades ning leiti, et ühe andmeosa 

peal treenitud mudel töötab hästi ka treenimiseks mittekasutatud andmete ennustamiseks, mis 

kinnitab mudeli universaalsust. 

Proovide kvaliteeti hindavate mudelite rakendamiseks loodi ka spetsiaalne 

resekveneerimisproovide disainimise tarkvara, SBS Designer, mille beeta-versioon asub 

aadressil http://bioinfo.ut.ee/sbsdesigner. 
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Supplementary Figure 1. Predicted effects of factors dG15, ‘any’, N1N2, N3N6 and N4N5 on LSI, using the LSI 
prediction model. When the influence of a factor was analysed, the levels of other factors were fixed to their 
mean levels. The blue line or the centre of the bar is the predicted value; red lines or the top and the bottom of 
the bar are the upper and lower 95% confidence limits for the expected mean LSI value, respectively. 
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Supplementary Figure 2. Predicted effects of factors dG13 and ‘any’ on ACR, using the ACR prediction model. 
While each factors was analysed, the effects of every other factor were fixed to their mean levels. The blue line 
is the predicted value; the upper and bottom red lines are the upper and lower 95% confidence limits, 
respectively.  
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Supplementary Figure 3. Distribution of factor levels, used in LSI and ACR prediction models, in our dataset 
and in a random dataset, composed of 10000 randomly selected probes from the human genome. 
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Supplementary Figure 4. Distribution of CFS and ‘dust’ factor values in our dataset and in a random dataset 
composed of 10000 randomly selected probes from the human genome. As one can see, the probes in our dataset 
had been previously filtered by eliminating probes with high CFS and ‘dust’ values.



Supplementary Table 1. Descriptions and effects of sequence-based factors on ACR and LSI. Type – type of the factor: either categorical (C) or numeric (N); Values – 
range of possible values the factor can have (“continuous” designates that any value is theoretically possible); R2 – percent of variability explained by factor (prediction 
power); P – the p-value for the significance of the factors. 

SEQUENCE-BASED FACTORS 
FACTOR DESCRIPTION TYPE VALUES LSI ACR 

    R2 P R2 P 

dG15 

The Gibbs free energy of probe’s last 15 bases binding to its target DNA.  All 
dG-s are calculated using FASTAGREP (available from 
http://bioinfo.ebc.ee/download/), which utilises nearest-neighbour DNA 
thermodynamics (SantaLucia, 1998) 

N continuous 5.4% <.0001 1.4% <.0001 

dG14 The Gibbs free energy for the last 14 bases N continuous 5.4% <.0001 1.6% <.0001 
dG13 The Gibbs free energy for the last 13 bases N continuous 5.4% <.0001 1.8% <.0001 
dG12 The Gibbs free energy for the last 12 bases N continuous 5.0% <.0001 1.8% <.0001 
dG11 The Gibbs free energy for the last 11 bases N continuous 4.3% <.0001 1.5% <.0001 
dG10 The Gibbs free energy for the last ten bases N continuous 3.6% <.0001 1.1% 0.0006 
dG9 The Gibbs free energy for the last nine bases N continuous 3.0% <.0001 0.9% 0.0015 
dG8 The Gibbs free energy for the last eight bases N continuous 3.3% <.0001 1.1% 0.0004 
dG7 The Gibbs free energy for the last seven bases N continuous 3.6% <.0001 1.1% 0.0006 
dG6 The Gibbs free energy for the last six bases N continuous 3.6% <.0001 0.8% 0.0035 
dG5 The Gibbs free energy for the last five bases N continuous 3.5% <.0001 0.8% 0.0034 
dG4 The Gibbs free energy for the last four bases N continuous 2.1% <.0001 0.8% 0.0039 
dG3 The Gibbs free energy for the last three bases. N continuous 1.3% 0.0001 0.5% 0.0355 

dust 

A score reflecting the complexity of a probe’s sequence. A probe containing 
many simple repeats has a high ‘dust’ score, while a probe containing various 
different nucleotide combinations has a low ‘dust’ score 
(ftp://ftp.ncbi.nlm.nih.gov/pub/tatusov/dust/) 

N 0, 1, 2, 3…n 0.3% 0.0684 0.0% 0.7051 

total_Aprc Percent of A nucleotides in the whole probe sequence N 0-1 0.7% 0.1634 0.6% 0.1031 
Factors related to the 3’ end of probes 

N1 Type of the nucleotide at the 3’ end of the probe. Can be either A, C, G or T C A, C, G, T 4.5% <.0001 0.4% 0.2084 
N2 2nd nucleotide from the 3’ end of the probe C A, C, G, T 4.6% <.0001 0.5% 0.1163 
N3 3rd nucleotide from the 3’ end of the probe C A, C, G, T 2.4% <.0001 0.1% 0.8191 
N4 4th nucleotide from the 3’ end of the probe C A, C, G, T 2.8% <.0001 0.7% 0.0394 
N5 5th nucleotide from the 3’ end of the probe C A, C, G, T 1.1% 0.0049 0.6% 0.0610 
N6 6th nucleotide from the 3’ end of the probe C A, C, G, T 0.3% 0.3590 0.1% 0.6392 

N1N2 
Combination of the 1st and 2nd nucleotide, counting from the 3’ end of the 
probe 

C AA,AC,AG,AT,CA…TT 
9.8% <.0001 2.1% 0.0540 

N1N3 Combination of the 1st and 3rd nucleotide C AA,AC,AG,AT,CA…TT 7.5% <.0001 1.4% 0.3852 
N1N4 Combination of the 1st and 4th nucleotide C AA,AC,AG,AT,CA…TT 9.7% <.0001 2.5% 0.0143 
N1N5 Combination of the 1st and 5th nucleotide C AA,AC,AG,AT,CA…TT 6.8% <.0001 1.5% 0.3233 
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N1N6 Combination of the 1st and 6th nucleotide C AA,AC,AG,AT,CA…TT 5.8% <.0001 1.5% 0.3206 
N2N3 Combination of the 2nd and 3rd nucleotide C AA,AC,AG,AT,CA…TT 9.8% <.0001 2.1% 0.0639 
N2N4 Combination of the 2nd and 4th nucleotide C AA,AC,AG,AT,CA…TT 8.7% <.0001 2.3% 0.0332 
N2N5 Combination of the 2nd and 5th nucleotide C AA,AC,AG,AT,CA…TT 7.3% <.0001 2.3% 0.0314 
N2N6 Combination of the 2nd and 6th nucleotide C AA,AC,AG,AT,CA…TT 5.3% <.0001 1.2% 0.5706 
N3N4 Combination of the 3rd and 4th nucleotide C AA,AC,AG,AT,CA…TT 5.7% <.0001 1.7% 0.1741 
N3N5 Combination of the 3rd and 4th nucleotide C AA,AC,AG,AT,CA…TT 4.2% <.0001 1.2% 0.5594 
N3N6 Combination of the 3rd and 6th nucleotide C AA,AC,AG,AT,CA…TT 4.2% <.0001 0.8% 0.8561 
N4N5 Combination of the 4th and 5th nucleotide C AA,AC,AG,AT,CA…TT 5.9% <.0001 2.5% 0.0197 
N4N6 Combination of the 4th and 6th nucleotide C AA,AC,AG,AT,CA…TT 4.3% <.0001 1.4% 0.3497 
N5N6 Combination of the 5th and 6th nucleotide C AA,AC,AG,AT,CA…TT 2.5% 0.0183 1.6% 0.2194 
Aprc A nucleotide percentage among last six bases N 0-1 3.4% <.0001 0.5% 0.0179 
Cprc C nucleotide percentage among last six bases N 0-1 7.7% <.0001 0.6% 0.0096 
Gprc G nucleotide percentage among last six bases N 0-1 1.2% 0.0002 0.1% 0.3976 
Tprc T nucleotide percentage among last six bases N 0-1 0.6% 0.0093 0.1% 0.2233 

Arank 
Weighed score of A nucleotide presence among last six bases. 1st position from 
the 3’ end gives six points, 2nd position gives five points, and so on 

N 0, 1, 2 … 21 
3.3% <.0001 0.7% 0.0042 

Crank Weighed score of C nucleotide presence among last six bases N 0, 1, 2 … 21 9.1% <.0001 0.7% 0.0036 
Grank Weighed score of G nucleotide presence among last six bases N 0, 1, 2 … 21 2.7% <.0001 0.0% 0.6908 
Trank Weighed score of T nucleotide presence among last six bases N 0, 1, 2 … 21 0.5% 0.0211 0.4% 0.0319 

Factors related to predicted primer dimers and self-priming 

end1 

These factors reflect three types of strongest primer-primer binding energies, 
calculated using MultiPLX 2.0 software (Kaplinski et al., 2005). First, the 
maximum free energy of a probe binding itself or identical probe in such a way 
that the 3’ end of one of the probes is bound and other is unbound 

N continuous 0.9% 0.0012 0.8% 0.0024 

end2 
The maximum free energy of a probe binding itself or identical probe in such a 
way that the 3’ ends of both probes are bound and can give a signal 

N continuous 1.0% 0.0007 0.7% 0.0046 

any 
The maximum free energy of a probe binding another identical nearby probe in 
such a way that the 3’ ends of both probes remain unbound and therefore no 
signal can be given 

N continuous 1.1% 0.0004 0.9% 0.0010 

CFS 

Chance (probability, %) of getting false signal in genotyping due to self-
priming. The formula for calculating that score is specifically designed for 
APEX oligos based on nearest-neighbour DNA thermodynamics (SantaLucia, 
1998). The score can vary between 0-100 (0 being the best result) 

N 0, 1, 2 … 100 0.6% 0.0084 0.1% 0.2849 
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Factors related to mismatches and SNPs 

mms Number of known mismatches between the probe and its target N 0, 1, 2 … 25 1.8% <.0001 0.0% 0.9082 
snps Number of SNP in the probe sequence N 0, 1, 2 … 25 0.0% 0.7839 0.0% 0.8796 

last_mms 
Position of the mismatch nearest to the 3’ end of the probe: 1 when at the 3’ end; 26 when 
there were no mismatches. In our data all probes were 25 bases long 

N 1, 2, 3 … 26 2.8% <.0001 0.1% 0.2150 

last_snp Position of the SNP nearest to the 3’ end of the probe N 1, 2, 3 … 26 0.0% 0.6256 0.0% 0.8046 
 
Supplementary Table 2. Descriptions and effects of the auxiliary factors on ACR and LSI. Type – type of the factor: either categorical (C) or numeric (N); Values – 
range of possible values the factor can have  (“continuous” designates that any value is theoretically possible); R2 – percent of variability explained by factor (prediction 
power); P – the p-value for the significance of the factors. 

AUXILIARY FACTORS 

FACTOR DESCRIPTION TYPE VALUES LSI ACR 

    R2 P R2 P 
PCR Category of the PCR reaction that amplified the probe’s target DNA. This factor allows us to 

analyse the impact of PCR reactions to the efficiency of the probes that are associated with it 
C 

1, 2, 3 … 
49 

11.4% <.0001 15.1% <.0001 

PCR_Tprc Percent of T nucleotides in the PCR product that contains the probe’s target DNA N 0-1 0.4% 0.1634 0.3% 0.2838 
PCR_len Length of the PCR product that contains the probe’s target DNA N 1, 2, 3…n 0% 0.9319 0.1% 0.5737 
sample Category of the dataset where that probe belongs to: ABCR170, ABCR100 or ARCAGE C 1, 2, 3 0.3% 0.2140 17.6% <.0001 
dG25 The Gibbs free energy of probe’s last 25-16 bases binding to its target DNA.  These are not 

considered for use in quality prediction model since we wish to predict quality for probes 
minimally 15 nucleotides long and for such probes dG16-dG25 can’t be calculated. 

N continuous 2.7% <.0001 0.8% 0.0034 

dG24 The Gibbs free energy for the last 24 bases N continuous 3.0% <.0001 0.7% 0.0051 
dG23 The Gibbs free energy for the last 23 bases N continuous 3.5% <.0001 0.8% 0.0032 
dG22 The Gibbs free energy for the last 22 bases N continuous 4.5% <.0001 0.9% 0.0012 
dG21 The Gibbs free energy for the last 21 bases N continuous 5.0% <.0001 1.1% 0.0005 
dG20 The Gibbs free energy for the last 20 bases N continuous 4.9% <.0001 1.2% 0.0004 
dG19 The Gibbs free energy for the last 19 bases N continuous 4.8% <.0001 1.1% 0.0006 
dG18 The Gibbs free energy for the last 18 bases N continuous 4.8% <.0001 1.1% 0.0006 
dG17 The Gibbs free energy for the last 17 bases N continuous 5.2% <.0001 1.2% 0.0003 
dG16 The Gibbs free energy for the last 16 bases N continuous 5.4% <.0001 1.3% 0.0002 

 
 


