
University of Tartu 

Faculty of Biology and Geography 

Institute of Molecular and Cell Biology 

Department of Bioinformatics 

 

 

 

 

 

 

 

Priit Palta 

 

 

Statistical methods for DNA copy-number detection 
 

 

Master’s thesis 

 

 

Supervisor: Prof. Maido Remm, Ph.D. 

 

 

 

 

 

 

Tartu 2007 



Table of contents 

Abbreviations and definitions ...........................................................................................3 

Introduction.......................................................................................................................4 

1 Background review ........................................................................................................5 

1.1 Microarray-based copy-number detection ..............................................................5 

1.1.1 Array-CGH.......................................................................................................5 

1.1.2 Array-MAPH ...................................................................................................8 

1.1.3 Copy-number detection with genotyping microarray platforms....................10 

1.2 Necessity for statistics and statistical methods used for copy-number detection .13 

1.2.1 Fixed threshold-based method .......................................................................16 

1.2.2 Information-lending methods.........................................................................16 

1.2.3 Permutation-based methods ...........................................................................17 

1.2.4 Exact p-value method.....................................................................................19 

Objective of the work......................................................................................................21 

2 Material and Methods ..................................................................................................22 

2.1 Origin of the data ..................................................................................................22 

2.2 Data transformation, normalization and filtration.................................................22 

2.3 Statistical methods ................................................................................................23 

2.3.1 Shapiro-Wilk test of normality.......................................................................23 

2.3.2 Corrections for multiple testing .....................................................................24 

2.4 Programs used .......................................................................................................24 

3 Results ..........................................................................................................................26 

3.1 Probe-by-probe copy-number detection method...................................................26 

3.1.1 The parametric method ..................................................................................27 

3.1.2 The nonparametric method ............................................................................29 

3.2 The sliding window method..................................................................................30 

3.3 Normality test of experimental array-MAPH-specific microarray data ...............32 

3.4 Implemented programs..........................................................................................34 

4 Discussion ....................................................................................................................36 

Summary .........................................................................................................................40 

Kokkuvõte (Summary in Estonian).................................................................................41 

Acknowledgements .........................................................................................................43 

References .......................................................................................................................44 

 2



 Abbreviations and definitions 

 

BAC  bacterial artificial chromosome 

bp  base pair(s) 

CGH  comparative genomic hybridization 

ddNTP  dideoxynucleotides 

DNA  deoxyribonucleic acid 

FDR  false discovery rate 

LOH  loss-of-heterozygosity 

MAPH  multiplex amplifiable probe hybridization 

PAC  P1 phage-derived artificial chromosome 

PCR  polymerase chain reaction 

ROC  receiver operating characteristic 

SNP  single nucleotide polymorphism 

TI  tolerance interval(s) 

TIFF  tagged information file format 

WGSA  whole-genome sampling assay 
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Introduction 

 

Submicroscopic changes in DNA copy-number are most likely the cause of many 

genetic disorders (hereditary and de novo), play an important role in tumorigenesis and 

development of various diseases. The identifications of such malformation-associated 

altered regions in DNA give valuable information about the genes involved in the 

disease and would be one step towards understanding of the molecular mechanisms 

beneath. 

 

Recent developments in microarray technology have enabled genome-wide 

investigations of copy-number changes by means of combining conventional 

cytogenetic and high throughput microarray methods. 

 

To distinguish and confirm truly aberrated regions among normal variation and spurious 

findings, we need computational methods that can help the investigator to estimate the 

statistical significance of the results obtained from microarray experiments. 

 

The purpose of this work was to give an overview of currently used microarray-based 

techniques for copy-number detection. In addition, we focus on the in silico statistical 

methods used to date to assist copy-number detection. 
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Chapter 1 

Background review 

 

1.1 Microarray-based copy-number detection 

 

Several molecular cytogenetic methods such as comparative genomic hybridization 

(CGH) and multiplex amplifiable probe hybridization (MAPH) that have been evolved 

to microarray format allow specific and sensitive detection of genomic copy number 

alterations. Moreover, array-based genotyping platforms have been used to detect 

previously known and novel aberrations in the genomic DNA. Currently, the above-

mentioned microarray techniques have been used for studying cancer genetics, 

constitutional diseases and human variation. 

 

Copy-number detection by the means of microarray techniques is an indirect way to 

estimate genomic copy-number of the studied DNA by measuring the quantity of 

fluorescent signal intensity from the labeled DNA. The easiest way to find copy-number 

alterations in the studied DNA is to compare it with cytogenetically controlled, normal 

DNA. To rule out copy-number differences found due to the normal copy-number 

variation, several reference DNAs are often used, either as pooled reference set or as a 

set containing several individual genomic profiles. 

 

1.1.1 Array-CGH 

 

Microarray-based comparative genomic hybridization (abbreviated as array-CGH) is a 

technique for the genome wide detection of chromosomal imbalances. Array-CGH 

builds upon well-established comparative genomic hybridization procedure that was 

introduced by Kallioniemi and the others (Kallioniemi et al., 1992). The principle of 

array-CGH is that the test (studied DNA) and reference DNA (normal control DNA) are 

stained using different fluorescent dyes and competitively cohybridized to DNA 

microarrays (Solinas-Toldo et al., 1997). Genomic BAC clones, cDNAs, 

oligonucleotides or PCR-amplified sequences that are used as capture probes on the 

microarray are robotically spotted or in situ synthesized into distinct locations of the 

array matrix (Mantripragada et al., 2004). To avoid non-specific hybridization on the 

microarray (e.g. to repetitive sequences), concurrent DNA (most frequently human 
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repetitive sequences-specific Cot-1 DNA or salmon sperm DNA) is added into the 

hybridization solution. After the hybridization, microarray slides are washed to remove 

non-bound and weakly cross-hybridized DNA sequences whereby correctly bound 

sequences remain bound to their capture probes on the microarray. The quantity of 

correctly bound sequences in each spot is estimated by measuring the fluorescence 

intensities of fluorescence dyes by scanning the slides. This is done separately for both 

dyes and independent grayscale images (typically 16-bit TIFF images) are generated for 

both dyes. These images are then analyzed to identify the arrayed spots and to measure 

the relative fluorescence intensities for each array element. After microarray scanning, 

image analysis and correction of intensities for various intervening variables, gain or 

loss in the studied DNA can be indicated from the spots showing aberrant signal 

intensity ratios. Signal intensity ratio Sj for the jth spot on the array is calculated as 

logarithmic ratio of both fluorescent signal intensities: 

⎟
⎠
⎞

⎜
⎝
⎛=

j

j
j

G
RS 2log  

where (and also hereafter) j is an index running over all spotted probes (N probes) on 

the microarray, Rj is the signal intensity corresponding to the jth probe in one (most 

frequently red dye-specific) channel and Gj in the other (green) channel. 

 

Differences from the expected logarithmic ratio of zero can be interpreted as copy-

number differences between the studied test and normal reference genomes. Since the 

location-related information for the capture probes in known, acquired copy-number 

reports can be directly mapped to distinct regions on chromosomes, giving the genomic 

profile for the studied DNA (Quackenbush, 2002; Solinas-Toldo et al., 1997; Veltman 

et al., 2002). General overview of the array-CGH process is depicted in the Figure 1.1. 
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Figure 1.1. General principles of microarray-based comparative genomic hybridization. 

(a) Sample and reference DNA are differentially labeled with fluorescent dyes, which 

are typically cyanine-3 (green) and cyanine-5 (red). DNAs are mixed and cohybridized 

to a microarray containing spots of capture probes. The sample and reference bind 

specifically to those probes and the resulting fluorescence intensity ratios reflect their 

relative quantities. (b) Whole-genome idiogram of a small cell lung cancer cell line 

hybridized against a normal male reference on the submegabase resolution tiling array. 

Each black dot represents a single BAC clone spotted on the array. (c) Magnified view 

of an amplification at the c-Myc oncogene locus at 8q24.21 in the small cell lung cancer 

cell line.  (Lockwood et al., 2006). 
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1.1.2 Array-MAPH 

 

Array-based multiplex amplifiable probe hybridization (abbreviated array-MAPH) is a 

molecular cytogenetic method which similarly to array-based comparative genomic 

hybridization is a progressive development of conventional, gel-based multiplex 

amplifiable probe hybridization. MAPH method enables accurate and reliable detection 

of changes in DNA copy-number with a theoretical resolution up to 100 bp (Armour et 

al., 2000). Furthermore, since in silico designed and PCR-amplified capture probes can 

be made relatively flexibly, array-MAPH can be utilized for the determination of copy-

number changes in virtually any targeted locus of the human genome.  

 

The basic principle of the method is that the studied loci-specific probes can be 

quantitatively recovered and amplified after hybridization on a solid microarray matrix. 

In practice, the studied genomic DNA is denatured, immobilized on a membrane filter 

and hybridized to a mixture of in silico designed and PCR-amplified capture probes. 

Since in the hybridization solution the probes are in excess, every site that is recognized 

by the probes in the genomic DNA is occupied, so that the amount of bound probes 

depends on the number of available sites for each probe in the studied genomic DNA. 

After hybridization, filters are washed to remove non-specifically bound and unbound 

probes. Specifically bound probes are recovered from filters by denaturation and 

quantitative-phase PCR amplification. The amplified probe mixture is labeled with 

fluorescent dye and rehybridized to the microarray. Where, in distinct spots, there are 

sequences identical to probes which were initially hybridized to the studied DNA. After 

this, microarray slides are washed to remove non-specifically hybridized probes and 

scanned with microarray scanner. Raw signal intensities are extracted and capture 

probes and adequate signal intensities are resorted into their genomic order. Microarray 

signals are normalized (between-slide normalization) with respect to the control probe-

specific signals on the microarrays. Raw signal intensities are transformed to 

logartihmic scale and the average µj, standard deviation σj and 90% tolerance interval 

(TI 90%) values are calculated for each jth probe by using data from the control panel 

containing fluorescent signal intensities from several DNA samples of cytogenetically 

controlled and phenotypically normal individuals. This is done separately for both male 

and female reference DNAs. Signal intensity values of at least two adjacent probes 

deviating from the TI 90% values are considered indicative for the potential copy 
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number change in the corresponding region (Patsalis et al., 2007). Main steps of the 

array-MAPH method are described in Figure 1.2. 

 
Figure 1.2. A flow diagram of array-MAPH methodology describing: (a) capture probe 

selection and preparation, (b) microarray preparation and (c) microarray hybridization 

and data analysis (Patsalis et al., 2007). 

 

The main drawback of the array-MAPH method is that compared to the microarray-

based CGH the process is relatively laborious and time-consuming. Also, a potential 

drawback of single sample hybridization might be an increased influence of microarray-

caused artefacts and variances. On the other hand, this approach has the advantage of 

being able to collect a pool of normal data for the subsequent analysis. In contrast to 
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clone-based technologies, the method does not rely on clone availability from BAC, 

PAC or other libraries, as probes can be rapidly and almost unrestrictedly selected from 

any location in genome. Because specifically designed probes are relatively short, they 

can detect very small size genomic imbalances and allow developing extremely high-

resolution array analyses (Patsalis et al., 2007). 

 

1.1.3 Copy-number detection with genotyping microarray platforms 

 

In the past few years, researchers have also used genotyping platforms to detect copy-

number changes in the human genome. Arrays of in situ synthesized short 

oligonucleotides originally designed for detecting single nucleotide polymorphisms 

(SNPs) have been used to assess DNA copy-number in the studied genome. Since this 

approach is regularly used in parallel with array-CGH, it is often referred to as SNP-

CGH. The advantage of a combined SNP-CGH approach is the identification of allele 

specific gain and loss by SNP array and the robust copy number detection by array 

CGH (Kloth et al., 2007; Peiffer et al., 2006). 

 

Genotyping platforms initially developed to qualitatively determine genotypes of the 

studied loci could be used for copy-number detection, since the fluorescent signal 

intensity from each feature (oligonucleotide probe) shows dosage-dependent response to 

variations in copy-number. Moreover, genotyping arrays enable to distinguish if the 

studied DNA has one copy from each parental chromosome or two copies of one 

parental chromosome, both of which will generate a signal characteristic to two copies. 

 

The general principle of SNP-CGH is relatively simple. The test-DNA is studied in 

parallel on array-CGH and on genotyping platform. In the latter case, the DNA sample 

of interest is amplified and hybridized to microarrays carrying locus-specific capture 

probes. After hybridization, while amplified genomic sequences are specifically bound 

to the capture probes, array-based primer extension is carried out. During the primer 

extension step, the locus-specific oligonucleotide attached to the microarray is extended 

by one nucleotide (SNP) complementarily to the specifically bound (hybridized) 

genomic sequence. The more genomic sequences there are in the studied genomic 

material corresponding to locus-specific oligonucleotide probes on the microarray the 

more probes are elongated by one nucleotide during the extension step. The 
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qualification (base calling) and quantification (fluorescent signal intensity level) of 

specific loci (the SNP nucleotide and the genomic sequence next to the SNP, 

respectively) is possible by employing different fluorophores that are directly 

(covalently linked) or indirectly (linked by immunohistochemistry) attached to the 

dideoxynucleotides (ddNTPs) appended in the elongation step. After the extension, 

arrays are washed and similarly to array-CGH and array-MAPH the proportion of 

correctly bound sequences and the added nucleotide for each spot is estimated by 

measuring the fluorescence signal intensities of fluorophores by scanning the 

microarray slides. In this case, this is carried out separately for all four fluorescent dyes 

(one responsive for each different nucleotide – A, T, C, G) and again, independent 

grayscale (TIFF) images are generated. Finally, by using appropriate computer 

software, based on fluorescent signal intensities calculated from the TIFF images, 

genomic profile is generated for each analyzed DNA. Genomic profile contains 

information about all interrogated loci (SNPs) on the microarray; their positions in the 

genome and their fluorescent signal intensity values. Since the studied genomic material 

is hybridized onto microarray alone, without controlled normal reference DNA, the 

copy-number for each studied locus cannot be directly estimated from its signal 

intensity profile as in the case of array-CGH. Rather, the DNA is analyzed in a similar 

manner with array-MAPH: to detect copy-number changes in the studied DNA its 

signal intensity profile is compared with cytogenetically controlled reference DNA-s 

(the control panel) (Bignell et al., 2004; Peiffer et al., 2006). By doing this, the ratio Sj 

is calculated for each interrogated loci (SNP) j: 

j

j
j

xS
µ

=  

where xj is the studied DNA-specific signal intensity in the jth locus and µj is equal to 

the average of jth probe-specific signal intensities from the control panel. If the ratio is 

higher or lower than a predefined ratio threshold, the locus corresponding to the specific 

signal is considered as putatively altered. 

 

One problem with oligonucleotide-based genotyping arrays is their higher variability 

that may have risen because of the intrinsic variability of the PCR-based approach used 

to amplify the studied genomic material (Bignell et al., 2004; Lockwood et al., 2006). 

Consequently, this raises the rate of false positives and false negatives i.e. the number of 

loci that appear to be aberrated (which actually are not) and the number of loci that 
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appear to be normal, although their copy number is altered.  Therefore, to diminish the 

rate of false positive findings, more than one-probe-specific signal is considered in the 

analysis. Bignell and his coworkers used three consecutive SNPs as an indication of a 

genomic aberration (Bignell et al., 2004). Based on the analysis of ROC curves (a 

graphical plot of false positive rate vs. true positive rate while a sensitivity or threshold 

parameter is varied) Peiffer and others found that the number of false positives was 

minimal in case of 10-SNP “rule-of-thumb” – when they considered the average or 

median signal intensity of 10 consecutive SNPs (Peiffer et al., 2006). 

 

The major advantage of genotyping platforms compared to other copy-number detection 

methods such as array-CGH and array-MAPH is their capability of simultaneously 

profile the studied genome for both structural and genetic abnormalities. Moreover, 

simultaneous measurement of both signal intensity variations and changes in allelic 

composition makes it possible to detect both copy-number changes and copy-neutral 

events such as loss-of-heterozygosity (LOH). The studies using genotyping 

oligonucleotide arrays for copy-number detection demonstrate that combining genotype 

and copy-number analysis gives greater insight into the underlying genetic alterations, 

especially while studying cancer cells with identification of complex events including 

loss and amplification of loci. 
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1.2 Necessity for statistics and statistical methods used for copy-number detection 

 

Microarray-based copy-number detection related computational and statistical 

requirements can be divided into three separate steps: data preprocessing (microarray 

data quality control and normalization), single-array methods and multi-array methods 

(Diskin et al., 2006). Single-array methods are aimed at accurately identifying regions 

of gain and loss within one individual sample, including the optional characterization of 

breakpoints. Such methods range in complexity from simple thresholding-based 

decision to more sophisticated approaches that draw power from neighboring signals 

when making calls. Multi-array methods, which have received little attention to date, 

help to identify regions of consistent aberrations across multiple experiments. Such 

methods are required indeed to profile promiscuous for example tumor-related 

aberrations. 

 

Copy-number detection even for single arrays is not a simple task and cannot be 

regarded as easy. The reason is that, even though underlying biological nature of DNA 

copy-number is always discrete (in one cell, DNA copy-number in a certain locus is 

always fixed to a firm level) the fluorescent signal intensity of the studied and reference 

DNA(s) from the microarray experiment are continuous. Therefore, there is a need for 

comprehensive and precise statistical methods dealing with copy-number estimation, 

which can help the investigator to estimate the statistical significance of the results 

obtained from microarray experiments (Peiffer et al., 2006). 

 

In statistics, a result is called significant if it is unlikely to have occurred by chance. 

Such random chance is measured by probability, usually referred to as p-value. The 

smaller is the probability (p-value) of random appearance of a certain result, the higher 

is the significance of the result. Still, it is important to note that however small the p-

value, there is always a finite chance that the result is occurred by pure accident. If the 

p-value is smaller than predefined level of significance, we just have more statistical 

evidence that the event did not appear by chance. The significance level α is the 

probability that the null hypothesis will be rejected erroneously when it is actually true 

(a decision also known as a Type I error or false positive). 
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The seasures of statistical significance and statistical evidence are used in hypothesis 

testing. A null hypothesis (indicated as H0) is set up to be nullified or refuted in order to 

support an alternative hypothesis (H1). Nevertheless, the null hypothesis is presumed 

true until statistical evidence in the form of a statistical hypothesis test indicates 

otherwise. In case of copy-number detection, the null hypothesis usually declares that 

the DNA under investigation is normal. In case of human genomic DNA, normal means 

two copies for autosomal chromosomes or one and two copies for male and female sex 

chromosomes, respectively. 

 

Since microarray data often consists of thousands of reporters (and thousands 

independent statistical tests are performed), one should also consider the overall rate of 

erroneous decisions and therefore multiple testing corrections. As described above, the 

significance level α is the probability that in one independent test, the null hypothesis 

will be rejected incorrectly when it is actually true. The correct decision will be made 

with the following probability 

α−= 1correctP  

If we repeat our test for several times, e.g. ask whether all signal intensities from the 

current microarray represent loci with normal copy-number or not, we would also like 

to achieve the correct judgment for all signal intensities and appropriate genomic 

regions. Since all tests are considered autonomous from each other, the proper 

probability in the latter case would be 
tNP )1()1)...(1()1(altogethercorrect αααα −=−−×−=  

where Nt is the number of independent tests performed. 

By using the opposite event, we can now calculate the probability of being wrong 

somewhere, i.e. that at least once, we will draw the incorrect conclusion: 

altogethercorrect somewhere wrong 1 PP −=  

Practically, this is the probability of false positives for the entire experiment, in the 

present case, for one studied microarray m and therefore can be re-written as follows: 
tN

m α)(α −−= 11  

where α is the probability of false positive result in a single test and Nt is the number of 

independent tests applied to one microarray-specific dataset (Draghici, 2003). 
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Accurate and straightforward statistical methodology is extremely important because in 

an actual analysis (e.g. in clinical diagnostics) with patient DNA, all aberrated regions 

should be found. In addition, both false positive and false negative regions should be 

minimal and their rate accurately predictable. It has been denoted, that copy-number 

studies of the human genome have false positive and false negative results and this has 

raised important concerns regarding the suitability of microarray-based copy-number 

detection for clinical diagnostic applications, since in a clinical diagnostic environment, 

reliable assays, providing clear and high quality results of measurable significance are 

required (Price et al., 2005). Also, one must carefully weigh the detection of false 

positives (and the additional confirmation that would be needed) with the false 

negatives that may result in a missed diagnosis (Yu et al., 2003). 
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1.2.1 Fixed threshold-based method 

 

The easiest method used to identify putatively aberrated regions from a microarray-

based copy number detection assay is the fixed threshold method. In this case, the 

deviation of probe specific signal is considered to be indicative for a putative aberration 

if it exceeds some fixed limit of deviation (Menten et al., 2005). This method follows 

the ideology of the similar method used in case of expression microarray analysis – if 

gene G in condition A has, for example, two times higher expression than in condition 

B, it is considered to have different expression level between those conditions (Allison 

et al., 2006; Quackenbush, 2002). Accordingly, in case of copy-number detection, 

regions with higher medians are considered to reflect gains and those with lower values 

are considered to reflect losses of the DNA material (Hupe et al., 2004; Liva et al., 

2006). 

 

Fixed threshold values are usually found by comparing one or several normal vs. 

normal experiments or by visual assessment of normal vs. normal tests (Lingjaerde et 

al., 2005; Veltman et al., 2002). The most basic possibility is to manually define the 

upper and the lower threshold (Kim et al., 2005; Menten et al., 2005), but it can be also 

calculated automatically (Lingjaerde et al., 2005). There are also few modifications for 

this method – it is possible to smooth the data first and then set a threshold based on the 

smoothed results. Data smoothing is conducted by using moving average on the overall 

data (Menten et al., 2005) or on the subsets of data points segmented as sets with equal 

copy-numbers (Chen et al., 2005). The lack of fixed-threshold method is that it does not 

consider variance of the tests and offers no associated level of confidence (Allison et al., 

2006). Therefore, the use of simple ratio thresholds for calling gains and losses often 

leads to false negatives and can also lead to false positives (Diskin et al., 2006). 

 

1.2.2 Information-lending methods 

 

The method described above has one crucial shortcoming – it does not consider the fact 

that different reporters (probes on the microarray) have different signal intensity and 

different variance of signal intensities. This problem is partly solved by statistically 

more sound methods that use overall signals from a given experiment (microarray 

analyzed) to estimate the normal variance of signal intensities (Allison et al., 2006; 
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Quackenbush, 2002; Wang et al., 2004). The simplest method of this kind involves 

calculating the mean and standard deviation of the distribution of signal intensity values 

and defining a global fold change difference and confidence, which is essentially 

equivalent to using a Z-score for the whole data set (Quackenbush, 2002). This method 

does not consider the fact that distinct reporters (i.e. probes) can have diverse variance 

in signal intensity. Rather, it just allows giving a better estimation of the possible 

variance, since all signals corresponding to different probes are considered in the 

calculation. 

 

A more precise method proposed by Wang and his colleagues divides the studied data 

points into three different subsets. This is accomplished by using maximum likelihood 

method to fit a mixture of three Gaussian distributions (representing signals 

corresponding to amplification, deletion and normal copy-number) to a histogram of 

normalized signal intensity ratios. After dividing the data, average, standard deviation 

and relative proportion of the data points in each subset are found. Subset with the 

average signal intensity ratio closest to the zero is considered to represent the normal 

copy number. From that subset, 3σ upper and lower thresholds are determined. Data 

points from the two other subsets representing putative amplifications and deletions that 

fall outside the 3σ threshold are considered as aberrated (Wang et al., 2004). Picard and 

his colleagues proposed another similar method; they assume that regions carrying 

different discrete copy number are seen as data sets with changes in the average and the 

variance of the signal intensities or changes in the average only (Picard et al., 2005). 

The former model is also supported by other authors who have argued that despite the 

underlying cause, logarithmic microarray signals (that are assumed to have Gaussian 

distribution) having lower averages have higher variance and vice-a-versa, signals with 

higher averages have lower intrinsic variance (Quackenbush, 2002). 

 

1.2.3 Permutation-based methods 

 

If there is no data available to estimate the variance of signal intensities corresponding 

to each probe on the microarray, the permutation-based method should be considered to 

achieve more precise assessment of the variability of signal intensities, since it takes 

into account the peculiarity (variance, noise, etc) of the studied dataset (Yang & 

Churchill, 2007). Permutation-based method is somewhat mixture of fixed threshold 
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method and information-lending method, since it uses both fixed threshold and 

assessment of the variability of all signal intensity values from a current microarray 

study. It is offering not only a nonparametric segmentation procedure, but also a 

nonparametric test of significance, i.e. once a single threshold parameter has been set, 

the method identifies the regions of copy-number change without assuming that the data 

follow a normal distribution and furthermore, tests the significance of these regions 

without making any other assumptions (Price et al., 2005). 

 

The basic principle of permutation-based method is that the actual data is randomly 

shuffled numerous (usually ~5000) times to count how often clearly defined genomic 

alteration would become to light just by chance (Diskin et al., 2006; Myers et al., 2005; 

Yang & Churchill, 2007). Genomic alteration is defined here as a region containing a 

certain number of consecutive signals having an average that deviates from a fixed 

threshold. By counting such randomly appearing genomic regions it is possible to 

estimate the statistical significance of such arrangements in the studied DNA. If no such 

regions emerge by data randomization, one can say that the actual finding was 

statistically significant. The statistical significance of an arrangement is estimated as the 

proportion of times that same or higher-scoring regions were found in numerous runs of 

data shuffling in which signal intensities where permuted between probes and the 

highest-scoring region in the permuted data was recorded in each run (Diskin et al., 

2006). 

 

Figuratively, the null hypothesis of the permutation method is the studied genomic 

profile where originally in their genomic order positioned signal intensity values are 

randomly permutated (Price et al., 2005). For example, if the studied genomic profile 

consists of N probes (studied loci) and there is putatively aberrated region, containing l 

probes, then there would be 1+− lN  permutations for this profile, each equally likely. 

Let us consider that XA indicates an lA signals long aberration starting from the jth signal 

(probe) and that within this region, the average signal intensity Ax  deviates from the 

predefined signal intensity threshold T. If we now run the permutation test for RP times 

and additively count all randomly generated regions  where the length of those 

regions is 

PXN

AP ll =  and average over this region is AP xx ≥  (for copy-number gain) or 

AP xx ≤  (for copy-number loss), we can estimate the significance for the region XA as 

the right-hand tail probability from the permutation distribution D: 
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It should be noticed, that the statistical significance found is strictly analyzed dataset-

specific and cannot be directly compared to the probability evaluations from other 

analysis (Diskin et al., 2006). 

 

The main shortcoming of the permutation-based method is that the numerous data 

shuffling is time consuming. To overcome this problem, Myers and his colleagues 

proposed a simplified method where instead of calculating the distribution D, they 

approximate its probability density function with the normal distribution. If so, the 

statistical significance of predicted aberration is obtained by making 200 permutations 

of the actual data, estimating calculated parameters (average and standard deviation), 

and then integrating the tail of the underlying distribution beyond the observed value 

(Myers et al., 2005). 

 

1.2.4 Exact p-value method 

 

As pointed out, the most basic approach to estimate copy-number is to use fixed signal 

or ratio thresholds to identify probes corresponding to putatively altered loci in the 

studied DNA. However, fixed threshold-based method or its modifications do not take 

into account systematic differences in each specific probe hybridization performance. In 

case there is additional data available (technical replicates, several reference 

experiments) to estimate the variance of signal intensities corresponding to each probe 

separately, it would be useful to employ this knowledge in more precise estimation of 

copy-number alterations. This would increase the predictive accuracy of copy-number 

determination by considering factors (e.g. repeat regions that can account greater 

variability in its hybridization and non-specific binding affinity) inherent in each 

different reporter (Margolin et al., 2005). 

 

To analyze copy-number changes in cancer cell lines with Affymetrix p501 genotyping 

platform, Bignell and his colleagues adopted the analysis methodology of Affymetrix 

expression arrays. To estimate the significance of the copy-number variation in the 

target cancer cell line, they compared it with a reference set consisting of 29 normal 

DNA samples (Bignell et al., 2004). For any given SNP j, they assumed that its 
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logarithmic, smoothed (mean over five consecutive SNPs) signal intensity values in the 

normal reference set Sj follow a Gaussian distribution: ( )2,~ jjj NS σµ  and which 

parameters where estimated by using the 29 normal reference samples as follows: 

∑
=

=
K

k
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K 1
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where k=1,…K (K=29), represents the normal reference set. Assuming that the target 

cancer cell line has value  for the jC
jS th SNP, the significance of the difference of  

from the normal reference distribution S

C
jS
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Calculated probability estimates, how likely is it for the normal population to have 

signal intensity values as the cancer cell line (Bignell et al., 2004). 
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Objective of the work 

 

The main goal of this thesis was to develop a statistical methodology for copy-number 

detection with the microarrays, specifically for technologies, which use control panel of 

normal references. The statistical method should help to identify putative copy-number 

changes in the studied DNA and determine the statistical significance of those findings. 

Additionally, our aim was to implement developed methods in command-line software 

programs. 
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Chapter 2 

Material and Methods 

 

2.1 Origin of the data 

 

Microarray data used in this work was acquired from Dr. Ants Kurg’s laboratory, 

Department of Biotechnology, Institute of Molecular and Cell Biology, University of 

Tartu. The data consisted of 32 (64 subgrids) and 33 microarray slides (66 subgrids) 

from the human chromosome X-specific array, hybridized with cytogenetically normal 

male and female DNAs, respectively. Each microarray carried 558 chromosome X-

specific probes, uniformly covering the whole chromosome X, and also 107 autosomal 

control-probes and 4 control probes from the human chromosome Y. All microarrays 

and studied DNAs were applied with the previously described array-MAPH 

methodology. 

 

2.2 Data transformation, normalization and filtration 

 

The first step in data manipulation was the transformation of raw signal intensities to 

logarithmic scale. This was done by taking logarithm with the base of two from raw 

signal intensity values. Logarithmic transformation helps to stabilize variation between 

different datasets and to adjust the raw data to normal distribution, which was required 

in the following data analysis. Therefore, if not denoted otherwise, all subsequent steps 

were carried out with logarithmic signal intensity values. 

 

To apply between-slide normalization, signal intensities from different microarrays 

were rescaled with respect to the median of autosomal control probe-specific signals. 

This kind of ‘rescaling’ should make different microarrays more comparable, since 

although the overall signal intensity level is different on distinct array slides (due to 

several experimental dissimilarities, e.g. labeling and hybridization efficiency), 

independent use-proven control probes (as autosomal probes in case of chromosome X-

specific microarray) should yield relatively invariable signal intensity values. For each 

microarray subgrid i, we calculated the median medi of its autosomal control probe-

specific signal intensities. Then, for each microarray, we calculated a correction 

coefficient ci: 
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i
i

med
Cc =  

where C is previously defined baseline for the normalization, frequently used as C=2, as 

there are two copies of autosomal chromosomes in both male and female cells. Then, all 

raw signal intensities (xRij) from ith microarray were multiplied with the corresponding 

correction coefficient ci: 

=jx xRij ic×  

After normalization, the median of autosomal probe-specific signal intensities should 

have been the same for all microarrays (and subgrids) and all other signals also more 

comparable. 

 

To exclude signal intensities corresponding to deficient probes, which were not spotted 

on all microarrays, we filtrated the normalized microarray data. The capture probes that 

yielded signal intensities with a call rate less than 90% over male- of female-specific 

microarrays were discarded from the further analysis. 

 

2.3 Statistical methods 

 

2.3.1 Shapiro-Wilk test of normality 

 

Shapiro-Wilk test of normality was used in order to validate the distribution of one-

probe-specific signal intensities from the control panel consisting of normal reference 

DNAs. Shapiro-Wilk test considers the null hypothesis that sample x1,..., xn came from 

normally distributed data set. Small values of the calculated test statistics W evidence 

divergence from normality and investigator may reject the null hypothesis. Based on 

theoretical distribution of the W statistics, we can estimate the significance of the 

obtained W value by p-value (Shapiro S. S., 1965). In practical evaluation of the data, 

we used different significance level α to evaluate if one-probe-specific data follows a 

normal distribution. If the test significance was smaller than α, the null hypothesis (that 

the data set is normally distributed) was rejected. 
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2.3.2 Corrections for multiple testing 

 

To address the multiple testing problem in the copy-number detection, we used and 

implemented two multiple testing correction methods that help to adjust the significance 

level for numerous independent statistical tests. The easiest multiple testing correction 

is the Bonferroni method, in case of which the corrected significance level αm for 

microarray m would simply be 

t
m

N
αα =  

where α is the probability of false positive result in a single test and Nt is the number of 

independent tests inquired from one microarray-specific data. The null hypothesis is 

rejected for tests, which yield p-value smaller than the Bonferroni-corrected value of αm. 

Bonferroni method is relatively strict, since as the number of tests increases, the 

significance level quickly decreases (Draghici, 2003). 

 

To allow less conservative adjustments of the significance level, we also used method 

called the false discovery rate (FDR). False discovery rate assumes that the null 

hypothesis is correct for all tests, i.e. there are actually no altered regions in studied 

DNA, and tries to control the expected proportion of wrongly rejected null hypothesis 

(false positives). According to the FDR method, the proved tests are ordered 

progressively by the significance values obtained from individual independent tests. 

Then, each jth p-value (significance value) is compared with its specific threshold tj, 

which is calculated from the formula 

α×=
t

j
N
jt  

where α is the probability of false positive result in a single test and Nt is the number of 

independent tests inquired from one microarray-specific data. The null hypothesis is 

rejected for the tests, where pj < tj (Draghici, 2003). 

 

2.4 Programs used 

 

Data transformation and normalization was carried out with the spreadsheet program 

Microsoft Office Excel 2003 (Microsoft Corporation, Redmond, WA, USA). 
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Shapiro-Wilk test of normality was carried out by the means of statistical software R for 

Windows, version 2.4.0. Within the R program, the sshhaappiirroo..tteesstt(()) function was called 

with the sshhaappiirroo__tteesstt__ffoorr__ssiiggnnaallss..rr script. 
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Chapter 3 

Results 

 

As a practical outcome of this thesis, we developed two statistical methods to assist the 

microarray-based copy-number detection by assigning the statistical significance for 

putatively aberrated loci. 

1. Parametric method using the distribution-based probabilities assumes that one-

probe-specific data X is normally distributed ( ( )2,~ σµNX ) and that different 

probes can have different mean and variance. 

2. Nonparametric method using signal intensity ranking does not require any prior 

knowledge about the distribution of data. 

 

Since in the case of a usual copy-number estimation experiment there is no preliminary 

knowledge about the changes in the studied DNA, both methods share the same null 

hypothesis – the investigated DNA has normal (typically two) copy number. Therefore, 

we cannot directly estimate the probability for a region to be altered; we rather calculate 

the probability for a region to be consistent with the null hypothesis. In other words, we 

calculate the probability that the locus corresponding to the studied signal intensity has 

normal copy number. If such probability is smaller than the predefined significance 

level, we can consider it as an indicator for a putative copy number change. 

 

3.1 Probe-by-probe copy-number detection method 

 

Probe-by-probe copy-number detection method is different from the thresholding, 

information-lending and permutation-based methods, since in the former case all 

calculations are made separately for each interrogated reporter (capture probe) on the 

microarray. For each probe, we estimate all relevant parameters of corresponding signal 

intensities (e.g. average, variance and rank) by exclusively using only this one-probe-

specific information. Probe-by-probe method assumes that each studied probes are 

independent from each other; i.e. if the signal x10 has a very small probability of being 

normal (and might correspond to a copy-number alteration), we do not make any 

presumptions about the condition of x9 or x11 nor any other signal and appropriate locus. 
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3.1.1 The parametric method 

 

The first, parametric method is somewhat similar to the method proposed by Bignall 

and his colleagues (both developed independently). The method is based on the 

assumption that one-probe specific normalized signal intensities from the different 

microarray experiments carried out with controlled normal individuals have similar 

signal intensity value. Due to the experimental variability, those readings yield in 

slightly different signal intensity values. Since the additional experimental noise is 

expected to be random and to have the normal distribution, the final signal intensities 

are also expected to be normally distributed (considering the fact that the family of 

normal distributions is invariable under linear transformations).  The former is also 

supported by the fact that different experimental factors that add up to the final 

variability can have any kind of distributions but the sum of those factors still 

approximates the normal distribution (central limit theorem). Therefore, we can assume, 

that jth probe-specific signal intensities in the control panel are approximately normally 

distributed stochastic variables with the mean jx  and with the standard deviation sj, 

which we can estimate as follows: 
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In the both equations, xi is the ith signal of the jth probe-specific signal intensities from 

the control panel and nj is the total number of jth probe-specific signal intensities in the 

control panel. 

 

By using the estimated parameters and the probabilities corresponding to the standard 

normal distribution-specific cumulative probability function Φ(x), we can calculate the 

probability pj of the jth probe-specific signal intensity xj of the studied DNA to belong to 

the same dataset with cytogenetically normal references: 
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where xj is the studied DNA-specific signal intensity value, jx  is the average and sj is 

the standard deviation of jth probe-specific signal intensities from the control panel (i.e. 

normal references). The principal of the parametric method is depicted in Figure 3.1. 

 

 
Figure 3.1. The principle of the parametric method. From normal references, the 

average and the standard deviation of signal intensities for the jth probe are calculated. 

(a) The studied DNA-specific signal intensity is compared with the standard normal 

distribution ( )21 ,0N . (b) For the studied DNA-specific signal intensity, the Z-value is 

calculated (in the latter formula, Z-value corresponds to the argument of the Φ). By 

using cumulative probability function Φ(x), we can calculate the probability pj (red-

colored fraction under the distribution curve) that the studied signal intensity belongs to 

the same dataset with cytogenetically normal references. 

 

In biological terms, by applying the latter formula, we can evaluate the likelihood that 

the studied DNA-specific locus corresponding to the jth probe on the microarray is from 

the same group with the control panel signals, i.e. it is normal. If the studied signal 

intensity significantly deviates from microarray signals seen for that probe before, we 

can mark the corresponding probe and genomic locus as putatively altered. By 

considering the direction of the trending signal intensity, we can deduce the underlying 

biological event. Signal intensity deviating upwards or below from the certain threshold 

can indicate putative gain or loss in the specific locus of the studied DNA, respectively. 
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The easiest way to use the parametric method is to define a fixed p-value threshold for 

the studied signal intensities. This is equivalent to the use of tolerance intervals (TI), in 

case of which the scientist defines the quantile (the lower threshold value) and the 

complementary quantile (the upper threshold value) for the control panel-specific 

dataset. Then, one can mark all probes that deviate from their specific TI values as 

altered. If the aberrated region spans more than one probe, consecutive probes should 

trend to the same side to be indicative for putative copy-number change. 

 

3.1.2 The nonparametric method 

 

If the microarray data is not normally distributed, the parametric methods will yield in 

incorrect results. In a real-life situation, this occurs if the data contains many outliers. If 

this is the case, it is helpful to use nonparametric methods that do not use exact signal 

intensities for copy-number detection but rather signal intensity ranking. 

 

Our parametric method assumes that the jth signal intensity of the studied DNA is 

normal, i.e. it shares the same copy-number with control panel-specific probes. Among 

the jth probe-specific signal intensities from the control panel, the signal intensity 

corresponding to the studied DNA has a rank, which is a random discrete variable that 

has a uniform distribution. 

 

 If the studied DNA-specific locus is duplicated or amplified, the corresponding signal 

intensity ranks relatively higher and therefore most of the control panel-specific signal 

intensities are expected to be smaller. Inversely, if the studied DNA-specific locus is 

deleted, the corresponding signal intensity is lower than most of the control panel-

specific signal intensities. By the discrete uniform probability function, we can then 

calculate the likelihood that the studied DNA-specific signal intensity xj is ranked as Xj 

in the joint set of control panel-specific signals and the studied signal intensity. This 

probability can be calculated as follows: 
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+

=
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where nj is the total number of references corresponding to the studied probe. 
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Now, by additively considering the number of reference signals that are bigger or 

smaller than the signal intensity corresponding to the studied probe, we can estimate the 

probability, that studied signal intensity was normal. This probability would be 
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where Xj is the rank of the studied DNA-specific signal intensity and nj is the total 

number of references corresponding to the studied probe. 

 

The calculated probability is considered significant, if it is smaller or equal to 

predefined significance level α. It has to be noted, that to use strict significance levels, 

the reference dataset has to be relatively big. 

 

If we now consider more than one-probe-specific rank obtained with probe-by-probe 

nonparametric method, we can find consecutive signals, which continually rank very 

high or low. For that, we can use the sliding window method. 

 

3.2 The sliding window method 

 

If the microarray data is noisy, simple probe-by-probe method would give the 

investigator a high number of false positive (if studied experiment were noisy) and false 

negative results (if reference experiments are noisy). Therefore, we suggest a simple 

sliding window method, which is more robust in case of low-quality experiments and 

that can be used with both parametric and nonparametric probe-by-probe copy-number 

detection methods. Sliding window method assumes that consecutive signal intensities 

are not reliant to each other and can be viewed as a series of independent data points. 

Still, one has to consider that there is no justified principal for applying the sliding 

window on signal intensities corresponding to loci that are physically located apart, i.e. 

on different chromosomes. 

 

A sliding window of fixed length w is used to go through successively organized 

probabilities for signal intensities. A simple calculation shows, that for a genomic 

profile of length N there would be 1+−= wNNw  of such windows. 
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If utilized with parametric method, the sliding window method evaluates the probability 

that signal intensities in the current window are normal. For that, the sequential 

probabilities are multiplied in each step. This is justified, because in case the signal 

intensities in the windows were spurious artifacts of the experiment, they would be 

expected to appear randomly and independently from each other. For the jth window, the 

probability pwj estimates the likelihood of a normal reference panel to contain a region 

of length w with such signal intensity values just by chance: 

∏
+

=

=
wj

ji

iwj pp  

The product gives us the probability evaluation that the region in the jth window is 

normal. To decide over its merit, we can compare this value with the theoretical 

probability for this region to be altered.  The latter is calculated with the presumption 

that probability for one probe to deviate significantly just by chance is α – the 

theoretical rate of false positives. If the real-data based probability is smaller than the 

theoretical probability, we can mark the region in the studied window as putatively 

altered. In the next step, the window is shifted by one probe (and corresponding signal 

intensity) and new probability is calculated. The processes of window shifting and 

probability calculations are illustrated in Figure 3.2. 

 

 
Figure 3.2. The sliding window method utilized with the parametric method.  Probes 

and corresponding p-values obtained with the parametric or nonparametric method are 

ordered into their genomic order. Fixed length window (in the current example, window 
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length w=5) is shifted through the data and for each window (bordered boxes), p-values 

corresponding to consecutive probes are multiplied and the product is stored. Calculated 

products estimate the probability for the probes (and adequate genomic region) in the 

window to be normal. 

 

If used in conjunction with the nonparametric method, the sliding window method 

evaluates the probability that signal intensities in the current window are normal by 

summing-up ranks corresponding to consecutive signal intensities. For the jth window in 

length w, we can calculate the sum Swj of the ranks: 
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where Xi is the rank of the studied DNA-specific signal intensity. 

 

 If the sum of consecutive signals is very small or big, it is considered indicative for 

putative copy-number changes. In addition, if the window length is longer than four 

consecutive probes and corresponding signal intensities, the distribution of such sums 

can be fairly approximated with the normal distribution. By using the latter fact, we can 

then estimate if the sum of the ranks in the current window is significantly high or low, 

which is indicative for putative copy-number loss or gain, respectively. 

 

As noted, the sliding window method is more robust and insensitive to spurious 

microarray signals, allowing detection of larger aberrated regions even if a small 

number of probes in the studied area were acting as false negatives – appearing normal 

even though they were actually altered. 

 

3.3 Normality test of experimental array-MAPH-specific microarray data 

 

To decide, which in silico copy-number detection method should be more appropriate 

with the array-MAPH method, we analyzed 64 and 66 datasets from experiments 

carried out with normal reference male and female DNAs, respectively. The microarray 

data was transformed, normalized and refined as described in Material and Methods. 

For each jth probe, the average jx  and the standard deviation sj were estimated. By 

using one-probe-specific signal intensity parameters from normal male (one copy of 

chromosome X) and female (two copies of chromosome X), we estimated male and 
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female-specific distributions of signal intensities. Example of actual and simulated (with 

calculated parameters) signals intensity distributions for one probe (probe X117) from 

the human chromosome X-specific microarray are depicted in Figure 3.3. 

 

 
Figure 3.3 Comparison of (a) simulated and (b) actual signal intensity distributions. 

 

Furthermore, we used the Shapiro-Wilk test to estimate if one-probe-specific microarray 

data follows a normal distribution, which is frequently assumed in the pertaining 

literature and was presumed by our parametric method for probe-by-probe copy-number 

detection. The results of this test are presented in Table 1. 
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Table 1. Results of the Shapiro-Wilk normality test conducted separately for male and 

female-specific data. The male-specific dataset contained signal intensities for 491 

probes from 64 subgrids (32 microarray slides) and the female-specific dataset 

contained signal intensities for 490 probes from 66 subgrids (33 microarray slides). 

Number and percetage of 
rejected null hypothesis Test significance 

level α 
Male data Female data 

0.05 213 (43.38%) 267 (54.89%) 
0.01 121 (24.64%) 176 (35.91%) 

0.005 88 (17.92%) 139 (28.36%) 
0.001 24 (4.89%) 74 (15.1%) 
0.0005 11 (2.24%) 53 (10.81%) 
0.0001 0 (0%) 37 (7.55%) 

 

As one can see from the results of the Shapiro-Wilk normality test, one-probe-specific 

microarray data tends to follow the normal distribution, although the number of probes, 

for which the null hypothesis of the normality was rejected at less strict significance 

level, is relatively high. This suggests that the ‘normality’ of the array-MAPH data is 

arguable and by default, the nonparametric method should be the method of choice. 

 

3.4 Implemented programs 

 

All developed methods for copy-number detection were implemented in the PERL 

scripting language. Both parametric and nonparametric methods were implemented in 

the program called ccaallcc__pp..ppll and the sliding window method was implemented in the 

wwiinnddoowwss..ppll program. Additional and shared statistical functions were implemented in 

the ssttaattiissttiiccss..ppmm module. 

 

As input data, the ccaallcc__pp..ppll uses the output file from a program called MAPHStat, 

developed to resort and normalize array-MAPH-specific data. Input data contains 

probe-by-probe organized signal intensities corresponding to the studied DNA and 

reference DNAs. The ccaallcc__pp..ppll program also takes the number of references and used 

method as input parameters. From the UNIX command line, the program is executed as 

follows: 
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$> calc_p.pl <MAPHStat output file> <number of normal references> <method, 'p' for 

parametric /'r' for ranking>  

 

In principal, for each studied DNA-specific signal intensity, we calculate its probability 

to have the normal copy number. This is done by using the parametric on nonparametric 

method. The output file p_values.txt contains for each capture probe the probe ID, trend 

of the deviation (gain or loss) and the probability for the corresponding locus of having 

normal copy number. 

 

The input file for the wwiinnddoowwss..ppll  program is the p_values.txt obtained by running the 

ccaallcc__pp..ppll program. It also takes the length of the window, the significance level and the 

multiple comparison correction method as input parameters. From the UNIX command 

line, the program can be run by: 

 

$> windows.pl <input file containing IDs and probabilities> <number of consecutive 

probes studied> <significance level> <multiple comparison correction; 

'N':one/'B':onferroni/'FDR'> 

 

The sliding window of length w is used to go through probabilities corresponding to 

consecutive probes. In each step, those probabilities in the current window are 

multiplied and the product is compared with the theoretical probability for a region of w 

probes long to be altered just by user-specified chance. This, if chosen, has been 

corrected for the multiple testing. The output of the program is probe IDs for 

significantly deviating signals, the statistical significance and the theoretical 

significance of findings and the trend of the deviation. 
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Chapter 4 

Discussion 

 

In recent years, malignant copy-number changes that have an effect on the development 

of cancer, congenital and de novo raised disorders have been studied more and more 

frequently. The same is true for normal variation of the genomes – in order to declare 

something malignant and defective, we have to know what is normal in the first place. 

While the means of microarray technology have offered high throughput techniques for 

copy-number studies, also straightforward statistical methods providing clear and high 

quality results of measurable significance are required. 

 

Statistical methods currently used for copy-number detection lack in control over false 

positive and false negative results. Some methods are too liberal and some methods are 

too conservative. To fill this gap, we propose two statistical methods for probe-by-probe 

copy-number detection and a sliding window method that uses information acquired 

from probe-by-probe method but is more robust and insensitive to single false positive 

and false negative signals. 

 

Firstly, unlike the thresholding, information-lending methods or permutation-based 

methods, parametric probe-by-probe copy-number detection enables to assess each 

probes inherent signal intensity average and variance. Therefore, there is no need to 

estimate the variance over all signal intensities corresponding to different capture 

probes and to use it as the fixed estimation of signal intensity variance for all probes. 

Moreover, not only does the parametric method allow estimating the statistical 

significance of putative copy number changes probe-by-probe, but it also helps us to 

predict the rate of false positive results and, if a suitable data is available, the rate of 

false negative results. For example, the comparison of male and female-specific 

chromosome X microarray data allows estimating the proportion of signals 

corresponding to the copy-number gain (one additional copy) and loss (heterozygous 

deletion) that would be missed just by chance. This is possible, since if we consider 

male-specific data from the chromosome X-specific microarray as normal (copy number 

is one), female-specific data should appear as a gain (copy-number is two) and vice 

versa, by reckoning the data corresponding to normal females as normal, male-specific 

data should look like a heterozygous deletion. If we assume, that jth probe-specific data 
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is normally distributed, the proportion bj of false negatives in the former case can be 

roughly estimated as 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −×+
Φ=

jN

jNjMjM

j
s

xqsx
2
α

β  

where jMx  and are the male dataset-specific average and standard deviation,jMs jNx  and 

 are the female dataset-specific average and standard deviation. jNs
2
αq  is the standard 

normal distribution-specific 
2
α quantile. It is important to note, that false negatives 

calculated with such one-sided formula is only a fraction of all false negatives. Similar 

approach should be considered to calculate the false negatives from the other tail of the 

distribution. In the present case, it would mean taking into account the parameters of the 

signal intensity values that correspond to the copy-number of zero. Moreover, higher 

order amplifications (in our case more than one additional copy) should be consulted in 

a similar manner. 

 

The main disadvantage of the parametric probe-by-probe copy-number detection 

method is that it assumes the normal distribution of the data. If this is not the case, the 

method can mediate miscalculated significances and therefore incorrect decisions. 

Accordingly, the distribution of the analyzed data should be appraised in advance using 

the parametric method. 

 

If the data does not follow a normal distribution, our nonparametric statistical test 

should be the method of choice. The nonparametric method does not require any prior 

knowledge about the data since it is insensitive to the distribution of the data. Rather, it 

uses robust assumption that just by chance, half of the signals in one-probe-specific 

reference set should be higher and the other half lower than the signal intensity 

corresponding to the studied DNA. The main drawback of the nonparametric method is 

that in order to assign significant p-values, it needs relatively large reference dataset. 

 

The overall size of the reference set is not directly fixed, but intelligibly, larger set will 

yield in a better estimation of probe-specific parameters in case of the parametric 

method and more precise significance level in case of the nonparametric method. Both 
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will result in more accurate evaluation of the copy-number in the interrogated locus. 

Moreover, if the appropriate reference data is available for cases of copy number gain 

and loss, it should be involved in the analysis to facilitate the estimation of false 

negative results. 

 

In practical work (scientific study or clinical screening), one should also consider the 

trade-off between allowed false positive and resulting false negative results. Use of less 

strict significance level to call putative alterations reduces the rate of false negatives but 

consequently, increases in the rate of false positive regions where the copy-number is 

assigned incorrectly. Inversely, stricter significance level will decrease the proportion of 

false positives and inevitably, increase the rate of false negative results, i.e. the number 

of missed copy-number alterations. Therefore, it is important to use optimal significance 

level so that in an actual analysis with patient DNA both false positive and false 

negative regions would be minimal and their rate accurately predictable. 

 

If the microarray data is noisy, it is reasonable to use several consecutive signal 

intensities for copy-number detection. For that purpose, we present the sliding window 

method. Sliding window method is more robust and less sensitive to spurious 

microarray signals. However, since this method draws power from several neighboring 

probes, it also decreases the resolution of the copy-number detection experiment. 

Therefore, one should carefully select an appropriate length of the window. If the 

window is too short, obtained results will be enriched with false positives and vice 

versa; if the window is too long, method can miss true copy-number alterations, 

especially short ones. 

 

Both parametric and nonparametric methods and the sliding window conception can be 

used for copy-number detection with other techniques than array-MAPH. The main 

requirement of our methods is that in conjunction with the studied DNA-specific 

genomic profile there are several normal references available. By default, this demand is 

fulfilled in case of copy-number detection with genotyping microarrays and can be 

realizable with the array-CGH method, since in clinical practice, all experiments are 

usually carried out with technical replicates. Furthermore, as the signal intensity data is 

available for normal references as well (fluorescence intensities corresponding to test 

and reference DNA-specific dyes are read and stored separately), it would be 
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considerably easy to collect a reference set of normal genomic profiles from array-CGH 

assays. And although the statistical methods and implemented programs presented in 

the current work were developed primarily for the array-MAPH method, they need only 

small modifications to be usable with other copy-number detection methods. 

 

Further improvements of our copy-number detection methods foresee a better 

incorporation of statistical significances (acquired from probe-by-probe methods) and 

genomic data available. For example, instead of just multiplying the probabilities 

representing consecutively studied genomic loci, it would be wise to weight the product 

with respect to the distance between simultaneously interrogated regions. It is intuitive 

that if the distance between those markers is small, they should have a higher 

probability for being both altered at the same time. Contrarily, if the distance between 

two virtually successive capture probes is relatively long, it is less likely that they both 

occurred in the same molecular event (deletion, duplication or amplification). Rather, at 

least on of them is a false positive result. 

 

If the investigators have scoped out to find malignant changes in the studied DNA, it 

would be useful to take into account the normal variation of the genomes. For that 

purpose, it would be easy to check each putatively aberrated locus against public 

domain databases comprising information about normal copy-number variations. If the 

region is presented in such database, one can discard it from the further analysis. 

 

Lastly, another improvement would be the modification of the sliding window method. 

Since alterations in the studied DNA are barely in the same size, it would be smart to 

use dynamic length for the window w, which would assist the investigator with more 

exact breakpoints for the altered region. 
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Summary 

 

Copy-number alterations in human genomic DNA are most likely the cause of many 

human health problems, constitutional disorders and play an important role in 

tumorigenesis. To detect such copy-number changes, the methods most currently used 

compare the studied DNAs with normal reference DNAs. 

 

In the current thesis, we described microarray-based techniques used for copy-number 

detection. We talked about the main concepts of copy-number detection with array-

CGH and array-MAPH methodologies and genotyping platforms. We also described 

and discussed statistical methods that are used to assess copy-number detection with 

above-mentioned techniques. 

 

As a practical work of the current thesis, we developed two statistical methods for copy-

number detection with the array-MAPH method. The parametric method can be utilized 

if microarray data is normally distributed. If the data is noisy and includes many 

outliers, the nonparametric procedure should be the method of choice, since it does not 

assume any distribution for the data and is insensitive for the outliers. Both methods 

help the investigator to find putatively altered regions in the studied DNA and to assign 

a statistical significance for those findings. 

 

The novelty of our methods is that the signal intensity data is analyzed separately for 

each capture probe presented on the microarray. The latter should improve the accuracy 

of the results, since it enables to consider each probes inherent signal intensity average 

and variance. Moreover, the sliding window method enables to find exact statistical 

significances over longer studied regions. 

 

Together with small modifications to our methods and proper data manipulation, our 

methods can be successfully utilized with array-CGH and genotyping platforms also. 

The main requirement in that case is that there would be several normal references 

available for the data analysis. 
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Kokkuvõte (Summary in Estonian) 

 

Magistritöö 

Statistilised meetodid koopiaarvu määramiseks 

Priit Palta 

Koopiaarvu muutused inimese genoomses DNA-s mõjutavad tõenäoliselt eelsoodumust 

paljudele haigustele, on konstitutsiooniliste hälvete põhjuseks ja osalevad otseselt ka 

kasvajarakkude ja -kudede väljakujunemisel. Et sellised pahaloomulised muutused 

DNA koopiaarvus üles leida, võrdlevad koopiaarvu määramise metoodikad enamasti 

uuritavat DNA-d teiste, tsütogeneetiliselt kontrollitud normaalsete DNA-dega. 

 

Käesoleva töö kirjanduse ülevaates kirjeldati kolme erinevat mikrokiibipõhist 

koopiaarvu määramise metoodikat; mikrokiibi võrdlevat genoomset hübridisatsiooni, 

mikrokiibi multipleks amplifitseeritavate proovide hübridisatsiooni ja koopiaarvu 

määramist genotüpiseerimiskiipidega. Kirjeldati ja arvustati ka ststistilisi meetodeid, 

mida on kasutatud koopiaarvu määramiseks eelmainitud koopiaarvu määramise 

meetoditega. 

 

Teeside praktilise tulemusena töötati välja kaks statistilist meetodit koopiaarvu 

määramiseks mikrokiibipõhise multipleks amplifitseeritavate proovide hübridisatsiooni 

metoodikaga. Esimest, parametrilist meetodit saab edukalt kasutada, kui mikrokiibi 

andmed ei sisalda palju erindeid ja on normaaljaotusega. Kui aga mikrokiibi andmed on 

mürarikkad ja sisaldavad palju erindeid, tuleks kasutada mittepatameetrilist meetodit, 

mis ei eelda andmetele mingit eelnevalt teadaolevat jaotust ja on tundetu erinditele. 

Mõlemad meetodid aitavad eksperimenteerijal leida võimalikke koopiaarvu muutusega 

lookusi ja anda nendele leidudele statistilise olulisuse hinnang. 

 

Meie meetodite uudsuseks on see, et signaalide analüüs viiakse läbi iga lookus-

spetsiiflise proovi puhul eraldi, sõltumatult teiste proovide signaalidest. See võimaldab 

tõsta tulemuste täpsust, kuna iga proovi keskmiste signaalitugevuste ja signaalide 

intensiivsuste varieeruvuse kaudu võetakse arvesse iga proovi spetsiifilisi omadusi. 

Libiseva akna meetodi kasutamine võimaldab aga anda täpse statistilise olulisuse 

hinnangu pikematele uuritavatele regioonidele 
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Lisaks, meie poolt välja töötatud statistilisi meetodeid saab kasutada ka teiste 

koopiaarvu määramise metodikate puhul, peaasi, et lisaks uuritava DNA kiibi 

andmetele on kasutada ka mitmete normaalsete kontroll-DNA-de samasisuline info. 
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