AGE TATS

Sequence motifs influencing the efficiency of translation



TABLE OF CONTENTS

LIST OF ORIGINAL PUBLICATIONS .....cottiiiiiii ittt 3
LIST OF ABBREVIATIONS ... ..iiiiititiiiiees et eee ettt e e e e e e e e e e e e e s s ssiinnnseeeeeeas 4
INTRODUGCTION ..cotiiiiiiiiiiiie e immmma bttt e e e e e e e e e e e e s s s s mnnnneeeaeeeeas 5
1. REVIEW OF LITERATURE ...ttt ieeee ittt e e e e e mnnes 6
1.1 The mechanism of translation............ccccceoiii i, 6
1.2 N-terminal signals in protein sequences ... .9
1.2.1 Signals determining the cleavage on amlmmlmi methlonlne reS|due .9
1.2.2 Protein stabilization and destabilizatiomalg .............ccccevvvvrviiiiiiiiiinnennn. 9
1.3 CodoN USAQE DIAS ....cooeeeeeiii i eeeeeem e 10
1.3.1 GC-content related codon usage bias. .o« eeeeeeeeeeeeeeeeerieeeeevnnnnnnnnnn.. 10
1.3.2 Replicational-transcriptional Selection ............cccceeeeeiiiiiiiiiiiiiiiiinn, 11
1.3.3 Horizontal gene transfer and codon usage.hbias...........ccccoeevieeeeiinnn. 11
1.3.4 Translational SEIeCHION .............uuiooeeeeii e 12
1.4 COdON CONEXE DIAS....ciiiiiiieiieieis s e e e e 15
1.4.1 Frameshifting promoting sequence CONteXIS..........ccovvvvveeeviviiivnnnnnnnnns 16
2. RESULTS AND DISCUSSION ....cuutiiiiiiiiiiiiieeeeneeeieeeeeeeeeeaeaeessessssssnnnsnnnnnees 18
2.1 AiIMs Of the present STtUAY .............oi e e e eeeeeeeeere e e e eeeeeee e 18
2.2 Shine-Dalgarno sequence length and predicteeéssion level (1)................. 18
2.3 Alanine preference in the second amino acidipoof highly expressed
PrOTEINS (1) .ot ettt e e e e e e e et e e e eeeeaeeeeeeeeneen 19
2.4 Universally preferred and avoided codon paibs.(........cccceeeeevviiiiiiiniiiiiinninn, 21
CONCLUSIONS. ... e e eee bbb r e e e e e e e e e e e e e e s e s s s nnnnneeeeeaeeas 23
REFERENCES ... .ottt e et e e e e e e e e et ees 24
SUMMARY IN ESTONIAN. ..ottt ettt e e e e e e e e e e neee 36
ACKNOWLEDGEMENTS ....coiiiiiiiii ettt 39



LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following original pedgions which will be referred to in
the text by their Roman numerals:

l. Vimberg, V., Tats, A., Remm, M. and Tenson, T. (2007) Translation
initiation region sequence preferences in Eschiericbli. BMC Molecular
Biology, 8:100.

Il. Tats, A., Remm, M. and Tenson, T. (2006) Highly exprespemteins

have an increased frequency of alanine in the seaarino acid position.
BMC Genomics, 7:28.

[l Tats, A., Tenson, T. And Remm, M. (2008) Preferred anddsaa codon
pairs in three domains of lif@BMC Genomics, 9:463.

Articles are reprinted with the permission of cagiit owners.

My contributions to the articles:

Ref I: performedin silico analysis and participated in the preparation o th
manuscript;

Ref II: performed data analysis and participatetheawriting of the manuscript;

Ref lll: performed data analysis and participatethie writing of the manuscript.



LIST OF ABBREVIATIONS

antiSD anti Shine-Dalgarno

CAl codon adaptation index

COA correspondence analysis

fMet formyl-methionine

HEG highly expressed genes

HGT horizontal gene transfer

MAP methionine aminopeptidase
N-terminal amino-terminal

ORF open reading frame

ORFeome all protein coding sequences of an osgani
RDCU relative dicodon usage

RSCU relative synonymous codon usage

SD Shine-Dalgarno



INTRODUCTION

Proteins participate in every process of a cellosSEhessential macromolecules are
formed during translation process where amino aaidgoined into proteins based on
the information encoded within mRNA. Translation #ee last phase of gene
expression takes place in a large complex — thesoime. The general structure and
function of the ribosome is highly conserved inliaihg organisms. The conservation
of basic mechanisms allows presuming that sigredpansible for the regulation of
the translation could share common motifs. Theegfahe discovery of new
conserved motifs could suggest aspects of transktregulation not known so far.
The growing number of sequenced genomes in re@arsyhas provided invaluable
resource for comparative genomics studies. By usamgputational methods, all this
data can be analysed to shed new light to the a&gol of translation starting from
the thorough analysis of the regulatory and codssgjuences of one genome
extending to the search for conserved motifs inoges belonging to different
domains of life.

In the literature part of current thesis shortadtiction to the mechanism of
translation and the known important sequence eleresponsible for its efficiency
is made. Secondly, amino-terminally located matésponsible for the stabilization
and the degradation of a protein are discussedthiftepart of literature review gives
an overview of the codon usage and codon contasiebireflecting the selection for
efficient translation in coding sequences of a ges.0

In research part of current thesis | introduce same aspects of protein
synthesis mechanism we have discovered by usingfbimatical methods. Two of
the three articles in this thesis are belongingregtto the field of comparative
genomics. The research part is focused on: 1) éh&tionship between Shine-
Dalgarno sequence base pairing potential and gemession levels irEscherichia
coli; 2) characterization of conserved sequence matifthe beginning of highly
expressed genes and 3) characterization of uniyefsased codon pairs in coding
sequences of different genomes.



1. REVIEW OF LITERATURE

1.1 The mechanism of translation

The machinery of translation — the ribosome — @i830f two unequal subunits with
three tRNA binding sites called E-, P- and A-shhiased on the type of binding tRNA:
deacylated tRNA, peptidyl-tRNA and aminoacyl-tRNYusupovet al., 2001; Selmer
et al.,, 2006). The correct functioning of those threessis one of the main aspects
responsible for the accuracy of protein synthesis.

[ nitiation

The efficiency of translation depends heavily ogr thitiation stage of translation.
During initiation two ribosomal subunits are joined mRNA and initiator-tRNA
binds to initiation codon in the P-site of the sbme with the help of initiation
factors.

For effective recognition of the translation iniittan region by the ribosome this
region includes several determinants for the locatiand the efficiency of
translational start. Interestingly, despite of tbeolutionary conservation of the
translation the initiation stage has extensive edgiices between bacteria and
eukaryotes. This is reflected also in different nglation initiation region
determinants.

In bacteria the small subunit of the ribosome imptex of several initiation
factors directly recognizes the translation initiatregion. Upstream of the initiation
codon is located a ribosomal binding site contgr@hine-Dalgarno (SD) sequence
(Shine and Dalgarno, 1974; Shultzabergeal., 2001). The SD sequence base pairs
with the anti Shine-Dalgarno (antiSD) sequence lan 16S rRNA 3’ terminal end
(Shine and Dalgarno, 1974). The length of SD:antibiplex can vary. There was no
full-scale analysis of SD region length Escherichia coli genes, but the average
number of paired nucleotides in 1169coli genes was shown to be 6.3 (Sclatial .,
1993). SD sequences longer than six nucleotidesnatevery efficient, probably
because more time is needed for clearance of atmslinitiation region (de Boest
al., 1983; Komarovat al., 2002). Indeed, the average SD sequence lendilylmy
expressed ribosomal protein genes is 4.4 nucleotid@marovaet al., 2002). A
significant positive correlation between the preserof SD sequence and the
predicted expression level of a gene was reponéf iprokaryotic genomes analysed
in silico (Ma et al., 2002). Unfortunately, the influence of the SDi&bx interaction
strength to the expression level was not analy®edly a weak correlation between
free energy of SD:antiSD interaction and transtatloefficiency was found in
experimental analysis (Letal., 1996).

The distance between the SD sequence and initiabdion (the spacing) has
large effect on the efficiency of translation. Tloag or too short spacer region may
inhibit the efficient translation (Shine and Dalgay 1975; Cheret al., 1994). The
optimal spacing varies from 5 to 13 nucleotidesn{Ruistet al., 1992; Cheret al.,
1994). Some studies have used the term ‘alignedirggawhich defines the region
between the reference SD sequence (5 — UAAGGAGGH)-and the initiation



codon (Ringquistt al., 1992; Cheret al., 1994). Aligned spacing of 5 nucleotides is
shown to be the most optimal (Chetral., 1994).

Another important element, A/U rich enhancer segaem front of the SD
sequence contributes to the effectiveness of @#osl (Komarovaet al., 2002;
Komarovaet al., 2005). This sequence can act as a standby bisttiedor the small
ribosomal subunit (de Smit and van Duin, 2003; 8twhd Joseph, 2006).

There is no SD-sequence in eukaryotes. Insteadeukaryotes the small
ribosomal subunit first binds with the help of numes additional proteins to the 5’
end of the mRNA and then scans towards the 3’ entd the initiation codon is
encountered (Kozak, 1989). The efficiency of tratish is reduced if the sequence
surrounding the AUG codon deviates significantiynfrcertain preferred nucleotides.
For example, the nucleotide context at the begmmifSaccharomyces cerevisiae
HEG is shown to be AUGC(U/C) (Hamilton et al., 1987; Miyasaka, 1999;
Fuglsang, 2004). The so-called Kozak consensusesegucCC(A/G)CCAUG was
obtained from 699 vertebrate genes (Kozak, 1989719 ater it was revealed that
preferred nucleotide sequences around initiatiodonoare quite diverse among
different eukaryotes (Cavener and Ray, 1991). Hewethe G nucleotide following
the initiation codon (+4G) was still present in mokthe studied eukaryotic species.
In addition, the bias for C nucleotide at positieh has been described in eukaryotic
genomes (Nakagaweh al., 2008).

Archaeal translation initiation shares characterittatures to both — bacterial
and eukaryotic translation initiation. Archaeal ngkation initiation factors are
homologous to those of eukaryotes (Kyrpides and $&40&998). Some archaexg
Sulfolobus solfataricus, use two distinct mechanisms for translation aiitin: SD-
dependent initiation operates on distal cistronspolfycistronic mMRNAs, whereas
‘leaderless’ initiation operates on monocistroniBRKAs and on opening cistrons of
polycistronic mMRNAs which start directly with thaitiation codon (Benelliet al.,
2003). In addition to archaea, leaderless mRNAsclwtare lacking entirely 5'-
untranslated region have been identified in baztand eukaryotes (Jannsen, 1993).
In case of leaderless initiation, codon-anticodeieraction between initiator-tRNA
and the initiation codon appears to be necessaryefiicient binding of small
ribosomal subunit to the 5’ extremity of the leddes mMRNA (Grillet al., 2000;
Benelliet al., 2003).

Elongation

Elongation stage is very similar in prokaryotes an#taryotes. During the elongation
ribosome moves along the mRNA being assisted bgrakwlongation factors for
incorporating amino acids into the growing polypéptchain. Elongation starts with
peptidyl-tRNA (in case of first elongation step i initiator-tRNA carrying
methionine or formyl-methionine) in the P-site. Awacyl-tRNA binds to its
complimentary codon of mRNA in vacant A-site. Dyyithe peptidyl transferase
reaction the polypeptide chain from the peptidyNfRin P-site is transferred to the
amino acid of the aminoacyl-tRNA in the A-site ahe polypeptide is extended by
one amino acid. Former peptidyl-tRNA becomes dedeyl During translocation
when ribosome moves ahead on the mRNA by one cdBONA carrying the nascent
peptide is moved from the A-site to the P-site legvA-site free for the next
aminoacyl-tRNA. Deacylated-tRNA leaves through Easite from the ribosome.



The binding of deacylated-tRNA to the E-site play;damental role in
maintaining the reading frame. Ribosomes where yda@c-tRNA binding to E-site
is compromised by mutations have increased frarfteghfrequencies (Sergiest al.,
2005). Correct reading frame is achieved througHoneanticodon binding and
allosteric linkage with the A-site. Namely, an opmd E-site induces a low-affinity
A-site and an occupation of the A-site triggers tieéease of the E-site tRNA
(Geigenmuller and Nierhaus, 1990; Marqeeal., 2004; Trimbleet al., 2004).

Important role in achieving the accurate and edficitranslation lies on the
translated mMRNA sequence itself. The impact of codesage and codon context
usage to the translational efficiency and accutiacgurveyed in Chapters 1.3.4 and
1.4.

Termination

Elongation continues until ribosome reaches a stogon. In bacteria the most
frequently used stop codon is UAA (Sharp and BuJm@B8). The stop codon usage
bias exists also in eukaryotes. In lower eukarytkesfungi and invertebrates UAA is
preferred while the most over-represented stop man@lants and mammals is UGA
(Sun et al., 2005). Correct recognition of stop codon is aaptbritical stage of
protein synthesis. Stop codon read-through leadsetdranslation beyond the natural
end of the coding sequence. This will lead to the-functional protein product which
in most cases is harmful to the cell due to itsfolasng and aggregation with other
misfolded proteins. In addition, the degradation soich non-functional proteins
wastes the energetic resources of the cell. Oottier hand, stop codon read through
might be used for regulatory purposes. In caseeably[PSI+] phenotype the change
in the conformation and function of the translattenmination factor has led to the
increased read-through of stop codons creatingptenotypes more tolerant in
certain ecological niches (Uptain and Lindquist)20Trueet al., 2004).

The sequence context around stop codon plays ianorble in efficient
translation termination. Numerous studies havegassi the sequence immediately
following the stop codon as the most crucial deteamt of accurate translation
termination creating so-called extended stop sigRableet al., 1995; Tateet al.,
1996). Specific context varies in different orgamss but A or G as nucleotides 3’
from the stop codon are shown to be preferred (Breival., 1990; Suret al., 2005).

In prokaryotes interaction between 3’ nucleotidd ezlease factor 2 is shown (Poole
et al., 1998). The effect of 3' sequence can involve ewarch longer region. 1Is.
cerevisiae up to six nucleotides after stop codon can detezntine stop codon read-
through efficiency (Namyt al., 2001)

Upstream sequences have weaker role. Although éteba and baker’'s yeast
the nature of the last amino acids in synthesizedem has been related to the
termination efficiency (Mottagui-Tabaat al., 1998), later analysis i8. cerevisiae
andNeurospora grassa did not find significant bias in 5’ codons frometktop codon
(Williams et al., 2004).

Stop codon is recognized by the release factor wtd@ominates the translation.
In bacteria stop codons UAG and UAA are recognizgthe release factor 1; release
factor 2 recognizes UGA and UAA stops (Caskey, 1¥iZselev and Buckingham,
2000; Kisselewet al., 2003). In eukaryotes one release factor recograiieéhree stop
codons (Konecket al., 1977; Froloveet al., 1994). As a result, the polypeptide chain
is released from the tRNA and leaves the ribosome.



1.2 N-terminal signals in protein sequences

Several signals important for influencing proteaifHife and functionality are located
at the beginning of proteins. These include londkterminal signal peptides
determining the subcellular location of proteing lalso smaller signals. Among
posttranslational modifications the N-terminal nfm@itions are the most common
processing events. The identity of amino acid mesidollowing the starting

methionine is important determinant of methionieenoval and the stability of the
protein. Such signals could influence the consematevel of the beginning of

protein coding genes and resulting proteins.

1.2.1 Signals determining the cleavage on amino-terminal
methionine residue

During the start of bacterial protein synthesis thket is incorporated to amino-
terminus of the polypeptide (Kozak, 1983; Meindedl., 1993; Schmitet al., 1996).
During the following elongation cycle it is proceds Firstly, N-formyl part is
removed with deformylase resulting with the metimenin the amino-terminus. In
large number of proteins this methionine is alsnaeed (Shermast al., 1985). The
cleavage of the amino-terminal methionine depends¢he identity of the following
amino acid residue. The corresponding enzyme, mwthe aminopeptidase (MAP),
cleaves methionine in case it is situated in fafmAla, Gly, Pro, Ser, Thr or Val; the
methionine remains intact in case the following monacid is Arg, Asn, Asp, GIn,
Glu, lle, Leu, Lys or Met (Tsunasavehal., 1985; Ben-Bassat al., 1987; Milleret
al., 1987; Moerschelkt al., 1990). Usually the cleavage promoting residuege ha
short side-chain; MAP is not able to remove thehiogine in case of residues with
long or bulky side-chains (Hiredt al., 1989; Dalbogeet al., 1990; Schmittet al.,
1996).

The cleavage of amino-terminal methionine occuo ah eukaryotes and
archaea.S. cerevisae have two different MAPs with varied cleavage sfeity
against the same substrates but still making th@velge only in case of amino acids
with small side chains (Chest al., 2002). Archaeal MAPs are evolutionarily located
in the borderline between bacteria and eukaryatelsadso having similar substrate
specificity for small amino acids (Fadbal., 2006).

1.2.2 Protein stabilization and destabilization signals

Certain residues at the N-terminal part of the gotdirect the protein into
degradation. Those residues are described by teed\rule and define the life span
of the protein (Varshavsky, 1996). This regulatedtgolysis is conserved from
bacteria to mammals. Despite distinct proteolytachineries, the recognition of the
substrate shares common principles. Also, prokesyatnd eukaryotes have a
common set of amino acids acting as stabilizingestabilizing N-terminal residues
(Table 1).



Table 1. Eukaryotic and bacterial N-end rules (based orrgNavsky, 1996; Tasaki
and Kwon, 2007))o — stabilizing residues — destabilizing residue.

FILIWY/ RIKIHHI|N|Q|DE|C|A|S|T|G|V|P|M
E.coli e/ e/o|/e/e|e0|0|0|0|0|0|0O|0O|0O|0O|O|O|O|O
Scerevisiac | o|o| o o/ 0o/ 0| @/ @ 0| @| @@ O| Ol O| O] 0| O] O] O
Mammals |e|e| e/ e/ e e|e/e /e e|/e e e 0lo|0|0|l0|o|oO

1.3 Codon usage bias

The genetic information within the DNA is transtirto the protein sequences via
MRNA. The rules by which codons in mRNA are trateglainto amino acids in
protein are specified by the genetic code. Onehef main characteristics of the
genetic code is degeneracy — more than one codspedsfying the same amino acid.
Codons coding for the same amino acid are calledrsymous codons. According to
standard genetic code 18 out of the 20 amino dwd® synonymous codons, only
methionine and tryptophan are coded by one codecalse of the degeneracy it
would be expected that all synonymous codons coftinghe same amino acid are
distributed randomly and equally in protein codseguences. In fact, this is not the
case. Some synonymous codons are used more frggaadtpreferred over others.
This phenomenon is called synonymous codon usagedbisimply codon usage bias.

A simple measure for evaluating the codon usages h$a the relative
synonymous codon usage index (RSCU) (Sharpl., 1986). The RSCU is the
observed frequency of a codon divided by the fraqueexpected if all synonymous
codons for a specific amino acid were used equ&iCU value 1.0 indicates the
lack of codon usage bias. A codon that is used rfreguently than expected has
RSCU value larger than 1.0 and a codons that id less frequently than expected
has RSCU value smaller than 1.0.

Biased codon usage can be the result of differactofs like genomic GC-
content, strand specific mutational bias, horizbggene transfer and translational
selection and it varies among genomes, among gertewithin genes.

1.3.1 GC-content related codon usage bias

Prokaryotes present wide variations in genomic Gftent. Among sequenced
bacterial genomes it varies from 16.5%arsonella ruddii (Nakabachet al., 2006)
to 74.9% in Anaeromyxobacter dehalogenans (Sanfordet al., 2002). This inter-
species variation has been related mainly to thiatmon driven process (Lobry, 1997,
Singer and Hickey, 2000) but the adaptation to remvnental conditions (mainly in
termophilic bacteria) have also been suggestedhéBer and Bernardi, 1986; Musto
et al., 2004). However, although the GC-content of stmadtRNAs (tRNAs, rRNAS)
and growth temperature are highly correlated (Harst Merchant, 2001; Dag al.,
2006) the genomic GC-content as a whole does noelate with the growth
temperature (Hurst and Merchant, 2001). In hypembghilic archaea
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Nanoarchaeum equitans the protein coding sequences have obtained the
overrepresentation of purines (Daisl., 2006).

The wide variation of GC-content is reflected idon usage as well. Organisms
with high genomic GC-content show clear prefereioces or C ending synonymous
codons andvice versa, protein coding sequences in AT-rich genomes hadon
usage biased towards A and T ending synonymouseodable 2).

1.3.2 Replicational-transcriptional selection

The majority of the genes in bacterial genomeslacated on the leading strand
(Rocha, 2002). In addition, the leading strand amst more HEG than lagging strand
(Nomura and Morgan, 1977; Brewer, 1988). Such dttsiases are suggested to be
related with the maintenance of the speed of th@icegion fork and reduced
interruptions of gene expression. Namely, on legdstrand the replication and
transcription occur in the same direction and thisimizes the collisions of DNA
and RNA polymerases (Nomura and Morgan, 1977; Bred®88; Rocha, 2002;
Priceet al., 2005).

The difference of nucleotide compositions betwesadding and lagging DNA
strands could also create variation of codon us@gees on the leading strand are
often more GT-rich. Such strand specific codon hmsobserved especially in
spirochaetes (Lobry, 1996; Lafay al., 1999).Since leading and lagging strand are
replicated by different mechanisms (Kornberg andddal992), the structure of the
replication fork creates the situation where laggstrand is longer in a single-
stranded structure than leading strand (Marian82)1&nd thus more exposed to the
possible DNA damage. Similarly, during transcriptiooding strand is transiently
exposed and more sensitive to certain mutations as€C to T deamination (Beletskii
and Bhagwat, 1996).

1.3.3 Horizontal gene transfer and codon usage bias

During horizontal gene transfer (HGT) the genetiatenial can be passed from one
organism to another independent of their phylogerdistance (Akibeet al., 1960).
HGT is common between bacteria and thought to éerthin mechanism creating the
increased drug resistance. The examples of HGRlaceknown in eukaryotes (Hall
et al., 2005).

Atypical nucleotide compositions and species spedifferences of codon
usage allow discriminating between horizontallyngferred genes and the genes of
the host genomes (Kaplan and Fine, 1998; Moszzak., 1999; Garcia-Vallvest al.,
2000; Ochmaret al., 2000). Horizontally transferred genes might halféerent
codon usage from the host since they descend frdifiesent background. Thus the
sequence can provide a clue about their origin. @@ in case of very similar GC-
content of donor and acceptor genomes or alreaflysted codon usage between
transferred genes and host (process called ‘amébor) (Lawrence and Ochman,
1997) the detection of horizontally transferredegenould be quite complicated.
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Table 2. The RSCU values of two genomes with different G@Gtent. The most
preferred codon for each amino acid is highlightdgicoplasma capricolum as AT-
rich genome prefers AT-rich synonymous codons &ndnkia alni as GC-rich
genome prefers GC-rich synonymous codons.

Mycoplasma TTT Phe 1.89 TCT 1.58 TAT Tyr 1.81 TGT Cys 1.76
capricolum TTC 0.11 TCC Ser 0.03 TAC 0.19 TGC 0.24
GC = 24% TTA Leu 4.46 TCA 211 TAA Stop 0.50 TGA Stop 2.35
TTG 0.31 TCG 0.05 TAG Stop 0.15 TGG Trp 1.00
CTT 0.52 ccT 1.54 caT His 1.60 cCGT 0.73
CTC Leu 0.01 ccc Pro 0.09 cAC 0.40 cGC Arg 0.08
CTA 0.68 cca 2.30 cCAA Gin 1.91 cGA 0.12
CTG 0.03 ccaG 0.06 cCAG 0.09 cCGG 0.00
ATT 2.17 ACT 2.45 AAT Asn 1.70 AGT Ser 1.96
ATc lle 014 Aacc Thr 0.11 aAC 0.30 AGC 0.26
ATA 0.69 AcA 1.42 aAAA Lys 1.81 AGA Arg 4.92
ATG 'Met 1.00 ACG 0.02 AAG 0.19 AGG 0.15
GTT 2.63 GCT 242 GAT Asp 1.82 GGT 1.83
GTC val 0.08 Gcc Ala 0.11 GAC 0.18 GGC Gly 0.10
GTA 1.14 GcA 1.42 GAA Glu 1.85 GGA 1.88
GTG 0.14 GCG 0.06 GAG 0.15 GGG 0.18
Frankia alni TTT 0.10 TCT 0.11 TAT 0.20 TGT 0.25
GC=72% AL P cor 185 TAC Vo180 tec Y 7s
TTA Leu 0.01 TcCA 0.16 TAA Stop 0.13 TGA Stop 2.35
TTG 0.23 TCG 199 TAG Stop 053 TGG Trp 1.00
CTT 0.16 ccT 0.13 cCAT His 0.34 CGT 0.43
CTC Leu 2.12 ccc Pro 1.36 cCAC 1.66 CGC Arg 2.46
CTA 0.06 cca 0.16 caA Gn 0.10 cGA 0.31
CTG 341 ccG 2.35 CAG 1.90 cGG 2.55
ATT 0.13 ACT 0.10 AAT Asn 0.15 AGT Ser 0.22
ATCc lle 282 Acc Thr 2.47 AAC 1.85 AGC 1.68
ATA 0.05 AcA 0.12 AAA Lys 0.15 AGA Arg 0.05
ATG Met 1.00 AcG 1.31 AAG 1.85 AGG 0.21
GTT 0.12 GCT 0.12 GAT Asp 0.25 GGT 0.46
GTC val 2.20 GcCC Ala 2.12 GAC 1.75 GGC Gly 2.30
GTA 0.07 GcA 0.16 GAA Glu 0.28 GGA 0.28
GTG 1.62 GCG 1.60 GAG 1.72 GGG 0.96

1.3.4 Translational selection

The selection for translational efficiency (or signfranslational selection) related to
codon usage bias has particularly attracted thentain of researchers. Due to the
energetic cost of protein synthesis, inaccurate iaefficient translation is a very
pricy event for the cellular resources. The codeage bias can reduce that cost by
creating sequences consisting of optimal codons.

The synonymous codon usage in bactéfiacoli, Bacillus subtilis as well as in
eukaryotesS. cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, is in
correlation with the amount of tRNA isoacceptommere frequently occurring codons
are read by the more abundant isoacceptors (Ikerhi@&4, 1985; Dongt al., 1996;
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Moriyama and Powell, 1997; Percudasial., 1997; Kanayaet al., 1999; Duret,
2000). In other words, an organism prefers to use codonmishvare more rapidly
translated because the ribosome does not haveuse gar waiting the tRNAs. In
addition, such bias lowers more the chance forrnecd tRNA attachment than in the
case when frequencies of synonymous codons andegtvatons of tRNA
isoacceptors are more evenly distributed (Ehrenbedy Kurland, 1984). Indeed, it
was identified inE. coli that the usage of alternative synonymous codonl doe
biased in order to reduce the costs of energy asdurces resulting from the
nonsense and missense errors during translatioappeared that longer protein
coding genes had more biased codon usage (StodtdkiEyre-Walker, 2007). Since
synthesis of longer proteins spends more resouticesselection for optimal codons
in longer genes has important effect.

In addition, translational selection appears ateiht usage of synonymous
codons in genes with high and low expression le\sG have usually more biased
codon usage while lowly expressed genes have nmii@n codon usage (Sharp and
Li, 1987) (Figure 1).

The observations of biased codon usage in HEG havdo the creation of
codon adaptation index (CAIl). CAl is a numericalugawhich characterizes the
similarity of synonymous codon usage in a givenegenthat in the HEG (Sharp and
Li, 1987). The group of HEG consists of genes cgduor e.g ribosomal proteins,
outer membrane proteins, elongation factors, heatls proteins and RNA
polymerase subunits. Therefore, CAl can be usegredicting the gene expression
level and identifying the HEG in a given genome.l@Alues vary between 0 and 1.
A CAl value of 1 is achieved when all amino acidsigiven protein are coded by the
best codon in each synonymous codon family. Theetaiion between CAI and
experimental gene expression level is well docust(Futcheket al., 1999; Coghlan
and Wolfe, 2000; dos Re#t al., 2003; Jansent al., 2003; Lithwick and Margalit,
2003; Jia and Li, 2005).

Selection for translational efficiency usually dgign fast growing prokaryotes
and eukaryotes (Shagbal., 1986; Shields and Sharp, 1987; Stersical., 1994) but
is also described in plants (Fennoy and Bailey€3err993; Chiapellet al., 1998). In
human genome the evidence is less clear as the $agje variation of GC-content or
so-called isochoric structure of the human genoppears to be the main influence of
codon composition (Vinogradov, 2003). However, weakitive correlation between
gene expression levels and the frequency of opteodbns has also been found in
humans (Kotlar and Lavner, 2006).

Translational selection might act differently alothg protein coding genes. In
E. cali it is shown that the first part of protein codisgguences has more biased
codon usage than the middle and final part, indeégetly of sequence length (Karlin
et al., 1998). The influence of the +2 codon to the ti@ienal efficiency has been
measured (initiation codon being marked as Hlappeared, that 15-20-fold effect
can be obtained by varying this codon in the mRMNAilcg sequence; iB. coli AAA
is the most common and most expression promotidgrcan position +2 (Stenstrom
et al., 2001). Conversely, NGG codons in positiet®s +3 or +5 give strongly
reduced gene expression (Gonzalez de Valdiviasaidsson, 2004).
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Figure 1. Positions of 80 most highly expressed genes aaugridi their location of

two main axes of COA of RSCU. Highly expressed gegm@up together because of
the similarity of synonymous codon usage.
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In addition to the AAA preference as +2 codon (Stemmet al., 2001), the
preference for A exists in about 20-30 nucleotidsifions at the beginning &. coli
genes (Rochat al., 1999). This is suggested to be influenced bynted to decrease
the stability of mMRNA secondary structure in théiation site (Rochaet al., 1999;
Stenstronet al., 2001).

Previous studies have showed that in many bacter@alled minor codon®.§
AGG, AGA), which are otherwise very rare in a gemom@re used preferentially near
the initiation codon (Chen and Inouye, 1990; Okhal., 2001). Such minor codons
should reduce the translational efficiency dueht limited amount of corresponding
tRNAs and should not be favoured in HEG. Howevee, fireference for those codons
near the translational start exists even in HE@ssiing some kind of regulatory role
in response to changes in the tRNA pool size (Gdab, 2001).

It is shown that rare arginine codons AGA and AGIEI coli are prone for
peptidyl-tRNA drop-off (Cruz-Verat al., 2003; Cruz-Verat al., 2004). Peptidyl-
tRNA drop-off is peptidyl-tRNA dissociation from ehribosome before the correct
end of the translation, resulting in an erroneawsgin synthesis product (Menninger,
1976, 1978; Meneert al., 2000). In addition, if drop-off occurs very freznily, it
would lead to the saturation of peptidyl-tRNA hyids®e — an enzyme responsible for
recycling peptidyl-tRNAs for new deaminoacylated\tf&s. As a result of enzyme
saturation the pool of deaminoacylated tRNAs bemtimeiting and does not allow
efficient translation (Hernandez-Sancletzl., 1998; Tensoret al., 1999; Heurgue-
Hamardet al., 2000; Menezt al., 2000).

Importantly, the rate of drop-off is influenced the length of nascent peptide —
peptidyl-tRNAs with nascent peptides shorter thewes amino acids are more prone
for drop-off than longer versions (Heurgue-Hamaeirél., 2000). This suggests that
the preference for otherwise rare codons at thénbeg of protein coding genes
could be related to the regulation of protein sgsih via translation inhibition by
peptidyl-tRNA drop-off mechanism.

The peptidyl-tRNA drop-off rates can be increasgdniutations in peptidyl
transferase centre of the ribosome leading to weiakeraction between tRNA and
ribosomal A-site (Maivaliet al., 2001). Interestingly, the rates differ during the
starvation for different amino acids (Caplan andnkiager, 1979). The peptidyl-
tRNA drop off efficiency does not correlate withdom frequency. For example, as a
result of drop-off the peptidyl-tRNAs reading cododecoding amino acids lysine,
threonine and asparagine accumulate fastest argk theading codons decoding
leucine, glycine and cysteine accumulate slowestniihger, 1978). In general, all
codons beginning with A nucleotide and/or having#the second nucleotide in the
codon are more prone for drop-off (Cruz-Vetal., 2003).

1.4 Codon context bias

The properties and functionality of every base paid codon are influenced by the
surrounding sequence — the context (Yarus and yall@85; Shpaer, 1986; Gouy,
1987). This influence acts through the functiomgkinactions involving the tRNAs
and the ribosome. Similarly to codon usage the caamtext usage is also biased and
influences the translational efficiency. Experingmntesults support the suggestion
that codon context is even more strongly relatetlaioslational efficiency than single
codon usage (Irwirt al., 1995). Codon pair biases are directioeal,in E. coli the
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ACCCUG and CUGACC pairs are translated at markelffigrent rates, although
both codons are frequently used (Irvetral., 1995).

There have been several studies analyzing coderbiaaies in different species
(Gutman and Hatfield, 1989; Berg and Silva, 1995dfovet al., 2002; Boychevat
al., 2003; Mouraet al., 2005; Bucharet al., 2006; Mouraet al., 2007a). The main
selective effects on codon context are found inntlngeotides following the codon in
the 3’ direction (Berg and Silva, 1997; Fedorgval., 2002; Bucharet al., 2006;
Moura et al., 2007a). However, the specific avoided or preterpatterns differ
among species (Buchahal., 2006; Moureet al., 2007a). The only universal context
rule discovered is avoidance of type nnUAnn codairsp(Mouraet al., 2007a). It
was suggested that the codon context in eukary®taased because target sequences
for DNA methylation and trinucleotide repeats aresent at high frequencies, while
in bacteria and archaea the codon context is infleé mainly by the translational
machinery (Mourat al., 2007a).

The exact mechanism through which codon contexttfons has remained
obscure. It is suggested that the interaction batw&®NAS in the ribosome might
influence the sequence context effects in proteiding genes. (Smith and Yarus,
1989; Bucharet al., 2006). Since ribosome has three sites for tRN#libg, contexts
involving as much as three codons (codon-tripketse analysed in 11 fungal species
(Moura et al., 2007b). Despite of the close phylogenetic retesiops of studied
organisms the codon-triplet context varied, althowgrtain common trends were
observed. For example, nCC, nCG and nGn codons ass@ciated with the codon-
triplets which were not simply under-represented dmtirely absent in ORFeomes
(Mouraet al., 2007).

It is important to keep in mind that special amiacd motifs essential in
formation of protein 3D structures influence theguencies of codon contexts. For
example, the membrane associated proteins corggions of hydrophobic amino
acids. This leads to biased frequencies of dipeptighich in turn influences the
codon context frequencies. This aspect should kentanto consideration when
calculating the over- or under-representation aloro contexts. Unfortunately this
approach has not been very continual in contextiessuso far being used B coli
codon pair analysis (Gutman and Hatfield, 1989) kter in larger analysis of 16
genomes (Buchaet al., 2006).

1.4.1 Frameshifting promoting sequence contexts

Certain sequence contexts have been shown to be pnone to generate ribosomal
frameshifts. Such contexts are for example mon@uticle repeats, which may cause
translational (Gurvicket al., 2003) or also transcriptional slippage (Wageesl.,
1990; Baranowt al., 2005). So called *hungry’ codons for which amiogaRNA is

in short supply in starvation conditions could alswrease the frequency of
frameshifts errors if located in specific nucleetidontexts (Lindsley and Gallant,
1993).

Ribosomal frameshifting is also used as a gene esgmn regulating
mechanism. Several programmed frameshifting si@ge hbeen described in the
coding regions of mMRNAs from different organisreg)((Licznaret al., 2003; Jacobs
et al., 2007)). Such sites are used for regulating gemeession through recoding.
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Ribosomal frameshifts in these cases do not rasuibcorrect polypeptide but a
polypeptide with a different biological functioRor example, bacterial release factor
2 expression regulation operates through the frhiftiegy (Craigenet al., 1985;
Craigen and Caskey, 1986). In the early regiorelgfase factor 2 gene is located stop
codon UGA in correct reading frame. In case ofisigiht amount of release factor 2
in a cell this stop is effectively recognized byesse factor 2 and the translation is
terminated. In case of release factor 2 shortagetihframeshifting occurs and the
ribosome continues in new frame synthesizing reléastor 2 protein in full length.
In all bacteria (excep€hlorobium tepidum), where such programmed frameshifting is
used for release factor 2 expression regulationJ @GA is the promoting context
(Baranowet al., 2002).

Nevertheless, frameshifting errors are rare evesdsurring with a frequency
less than once every 10,000 codons (Kurland, 198#% means that sequences that
are prone to frameshifting are successfully avoidegrotein coding sequences.
Using this as an assumption, additional putatieg@ammed frameshifting sites have
been predicted irS. cerevisiae protein coding genes by computational methods.
Among the significantly under-represented heptasutades were found previously
known frameshifting promoting contexts CUU-AGG-CdaBUU-AGU-U; several
other significantly under-represented contexts vesigerimentally proved to be prone
for translational frameshiftinge(g GGU-CAG-A) (Shalet al., 2002).
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2. RESULTS AND DISCUSSION

2.1 Aims of the present study

The aim of this thesis was to shed new light ondiaional efficiency regulation by
using computational and comparative genomics methdtle specific aims of the
present study were as following:

1. To analyse the relationship between SD sequamt@ntiSD sequence base pairing
strength and gene expression levelEscherichia coli genes;

2. To describe the preferred and avoided motif<iviaire conserved at the beginning
of highly expressed open reading frames of differerganisms belonging into
different domains of life;

3. To describe the universally preferred and awbickedon pairs in all three domains
of life; to analyse discovered patterns in ordercharacterize the possible forces
behind the differential usage of codon pairs.

2.2 Shine-Dalgarno sequence length and predicted expression
level (1)

In bacteria, mMRNA region called Shine-Dalgarno seqe is one of the key regions
in binding of small ribosomal subunit to the mRNAs described in Ref I, the
selection of SD sequence is influenced by the drdetnperature and not influenced
by the growth rate; in addition, the SD:antiSD ratgion efficiency is considerably
related to the enhancer sequence. As a part okysiematic study of SD selection
preferences iik. coli we maddn silico analysis for studying the correlation between
SD length and predicted expression levels of pnoteiding sequences. This is the
first in silico study comparing the SD:antiSD interaction lengttl the CAI for allE.
coli genes.

Experimental research of co-authors showed thahigifgest translation level at
37°C was achieved in case of six paired nucleotimg/een SD region and 16S
rRNA 3’ end. The most effective SD sequence at 3RS AGGAGG. The free
energy of complete binding of AGGAGG with antiSD-1s7 kcal/mol. Experimental
results raised a series of questions: Are the rmapsimal SD sequences also most
commonly used iiie. coli MRNAs? Do the SD:antiSD interaction length andrsith
correlate with the gene expression level? To anshese questions we conducted
computational analysis of SD:antiSD interactionsdth E. coli genes using program
hybrid-min from UNAFold package (Markham and Zuk2005). With this program
we calculated the minimal free energy values fAKARMRNA duplexes and at the
same time collected the information about the lengid location of SD:antiSD
pairing.

We found that the average number of paired nudestin protein coding genes
in E. coli was 5.8 which is in good agreement with our expental results (6 nt).
However, the average predicted interaction forttadlse sequences was weaker than
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for the experimentally found most effective SD sspe — -6 kcal/mol compared to -
7.7 kcal/mol. A closer look at the paired regiohgwed that this was the result of
‘non-optimal’ SD sequences involved in base-pairiddamely, the SD:antiSD
interaction was often shifted to more A/U rich mtg in SD sequence and contained
mismatches giving also the weaker interaction. T3B:antiSD constructs in
experiments were continuous stretches of pairedeatides without mismatches. It
has to be mentioned that it is impossible to caleuthe exact energetic effect of
mismatches in this context. Specifically, we aralidg with the situation where the
rRNA and mRNA duplexes are not drifting freely imetsolution but stabilized by
contacts with ribosomal proteins and RNA.

Plotting the expression level represented as CAlnat) the number of paired
nucleotides in SD:antiSD region showed that theragyee CAl values and thus the
gene expression levels were the same regardldgbg afteraction length (Figure 5 in
Ref ). We propose that SD sequences and the eeh@eguences are acting co-
operatively in stimulating the translation. Our eb&tions also explain the previous
reports that in some cases the strength of the BB interaction does not
determine the efficiency of translation initiatioagion (Ringquistet al., 1992; de
Smit and van Duin, 1994; Lea al., 1996). Still, it is important to note, that inrou
experimental study the spacing between SD sequemtestart codon was not varied.
Spacer region used in experiments has been reptotedect efficient translation
initiation in E. coli (Barrick et al., 1994). However, in computational analysis the
SD:antiSD base pairing strength ln coli genes was calculated as the minimal free
energy between the 21 nucleotides upstream fronsttré codon and 13 nucleotides
from the 3’ end 16S rRNA where the distance betwsant codon and SD:antiSD
interaction was not fixed. Therefore, the possdifect to the efficiency of translation
by the spacing was not considered. It would berésteng to analyse the different
spacer regions irE. coli genes with different expression levels and SDSinti
interaction lengths in future.

2.3 Alanine preference in the second amino acid position of
highly expressed proteins (ll)

MRNA regions downstream from the initiation codariluence the efficiency of
translation both in prokaryotes and eukaryotesdituon different motifs in this
region have usually covered all protein coding genethe genome. Surely, this can
give an idea about the most frequently or raregdusequence patterns important in
regulation of the translation initiation event. Hower, the strongest effects
concerning the effectiveness of translation sharterge if a group of HEG were
analysed. HEG include the genes that encode psotdiich are needed for the basic
survival of the cell,eg genes coding ribosomal proteins, elongation fact®NA
polymerase subunits, outer membrane proteins aat dck proteins. Hence, the
translation of those proteins has to be constantigk and effective.

We compiled a representative set of different uhilzg organisms covering a
wide variety of different genomes to discover coneé patterns in all three domains
of life. Our dataset included organisms with vergali, average and very large
genome sizes, different GC%, free living organisrmobligatory parasites and
extremophiles. For all those genomes we comparedithvnstream regions in two
datasets — the HEG and the all genes dataset.
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The first surprising result came from the comparisb nucleotide frequencies.
Previous studies had shown that A-rich sequeneg Hfe initiation codon was most
expression promoting sequence and respectively, Adghe second codon in protein
coding sequences was the most expression pronmsstand codon (Stenstroghal .,
2001). However, our results showed that althoughthird, fourth and fifth codon in
HEG of some organisms is indeed more A-rich thaalirgenes, the second codon
had significantly lower A-nucleotide frequency ifE8 than in all genes (Figure 3 in
Ref II). Further analysis revealed the increaseduency of G- and C-nucleotides in
the second codon of HEG which in turn was the tesdl significant over-
representation of GCN codons in that position. G@N preference as second codon
existed in 11 of the 15 organisms studied (Tahile Ref Il). Interestingly, our results
support the part of Kozak consensus (Kozak, 198B7)L with the G nucleotide
following the start codon, suggesting that the aigraround translational start are
more conserved between bacteria and eukaryotegpthaiously thought. Our dataset
did not contain higher eukaryotes but recent stuti@ve supported our conclusions
also in vertebrates and plants where the preferfarc€ as the 8 nucleotide at the
beginning of HEG was discovered (Niimwetzal., 2003; Nakagawet al., 2008).

GCN family encodes the amino acid alanine. Insalidied organisms except
Mycoplasma genitalium the frequency of alanine as the second residueighlyh
expressed proteins was increased (Table 2 in Reflslithis universal preference
caused by the codon based or amino acid basedisefedhe comparison of GCN
codon usage in the second position of HEG andenathole HEG sequences did not
show any preference for a specific alanine codothénsecond position (Table 3 in
Ref 11). This suggests that the selection is actingamino acid level. Still, we cannot
altogether rule out the codon based regulation. gossible explanation supporting
the GCN codon selection is related to peptidyl-tR8Ap-off — premature peptidyl-
tRNA dissociation from the ribosome not allowingetimormal protein synthesis
(Menninger, 1976, 1978; Menex al., 2000). It is shown, that the rate of drop-off
event depends on two factors: the nascent pepeiaigtH and the specificity of the
codon. Firstly, the shorter the peptide, the mdifecient the drop-off (Heurgue-
Hamardet al., 2000). Hence, first few steps of translation dhed region at the
beginning of the protein coding sequence are mutstat. Secondly, those peptidyl-
tRNAs that read codons with A-nucleotides in thstfor second position are more
prone to drop-off (Cruz-Verat al., 2003). As our analysis showed, A-nucleotide
frequency was significantly reduced in second coafloHEG. Therefore it is possible
that GCN codons are used to avoid frequent dropegfints and to stabilize the
dipeptidyl-tRNA on the ribosome.

The amino acid based selection could be relatédetstability of proteins. The
first few N-terminal amino acids modulate the digbiof proteins (Varshavsky,
1996) and determine the cleavage of N-terminal fdmmethionine (or methionine in
eukaryotes) (Tsunasaveh al., 1985; Ben-Bassadt al., 1987; Solbiatiet al., 1999).
The rules for formyl-methionine or methionine rerabare similar in bacteria and
eukaryotes (Hirekt al., 1989; Moerschelkt al., 1990): the initiating amino acid is
cleaved in case the second residue is alanineinglyproline, serine, threonine or
valine. In addition, all those six amino acids atabilizing in bacteria and also in
eukaryotegTable 1) (Varshavsky, 1996; Tasaki and Kwon, 200¥g discovered
that the genes coding for proteins with cleavagerdening and stabilizing amino
acids in the second position are highly enrichethiwiHEG (Table 5 in Ref II).
Therefore it is possible that the observed nualieotind codon preferences in HEG
are caused by the functional constraint of aminm aesidues. Still, as alanine
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showed the most universal and most strong prefergmemains unclear why alanine
has been chosen from the set of six amino acids sumilar properties. It is possible
that alanine is more efficient in directing the sl of the initiating amino acid and
promoting protein stability.

Altogether, despite of the significant differences translation initiation
mechanism in bacteria and eukaryotes the discoyaefdrences at the beginning of
HEG seem to be universal.

2.4 Universally preferred and avoided codon pairs (lll)

Although translation initiation stage is the mostpbrtant step influencing the
efficiency of translation, during entire elongatioycle the efficiency and accuracy of
protein synthesis is also regulated to a largengxihis is achieved by the ribosome
maintaining the correct reading frame and incorpogacorrect amino acids as well
as by the use of optimal synonymous codons andesegucontexts in mRNA. The
existence of codon context bias is widely knowmifirly to codon bias studies it
has been accepted that the context bias is spgméesfic. Still, it has been proposed
that codon context is even more important than codsage for translational
efficiency (Irwinet al., 1995).

To analyze whether single codon preference or cquonpreference is more
conserved on the evolutionary scale, we comparédrelnt bacteria according to
relative synonymous codon usage (RSCU) and relalicedon usage (RDCU).
Similarity was measured by calculating the corretabf RSCU and RDCU values
between each pair of bacteria. All pairs of baetemalyzed were divided into nine
groups according to the evolutionary distance sdpay each pair. The average
correlation coefficients of RSCU and RDCU were gldted for each group.
Comparison of RSCU and RDCU correlations showetidherall codon pair usage is
indeed less conserved than single codon usager@tgin Ref Ill). However, these
findings do not rule out that a set of universaliyoided or preferred contexts still
exists.

To study the common rules of codon context biasosked for codon pairs that
are significantly preferred or avoided in three doms of life. These conserved cases
of biased codon pairs could shed light on the nmishas shaping the genes and
genomes. To ensure that the effects observed abtien pair level were not caused
by avoidances or preferences of dipeptides, the esgecbdon pair values were
normalized to the dipeptide frequencies.

In addition to neighbouring codons we tested theseovation of more distant
(1-3, 1-4, 1-5) codon pairs. However, fovdons 1-3 we found only one codon pair
with significant under-representation — GGUnNnnGGh conserved biases were
found for more distant codon pairs.

In order to differentiate between the effects rsglfrom the DNA based
selection and translation based selection the gitnenf biases was compared in
ORFeomes and in genomes. We found that conservigersaresult mainly from
translational effects not from DNA-related mecharsssince the biases are stronger
in ORFeomes than in genomes.

It was previously claimed that codon pair prefeeerscprimarily determined by
a tetranucleotide combination including the lastleatide of the first codon and all
three nucleotides of the second codon (Budttaa., 2006). However, after dividing

21



our datasets based on sub-patterns we discoveatdifferent patterns ranging from
dinucleotides to hexanucleotides could explain eorexd biased codon pair usage.
Still, with only one exception, all discovered patts contained fixed nucleotide in
the last position of the first codon in the codaiir p

Among codon pairs that were significantly avoided more than half the
organisms studied the most frequently avoided copaims contained following
patterns: nnUAnn, nnGGnn, nnGnnC, nnCGCn, GUCCndCCnn, nnCnnA or
UUCGNN. Avoidance of nnUAnn was described previpu®oura et al., 2007)
where part of this avoidance was related to thadawwe of TpA dinucleotides in
genomic sequences. Our genome and ORFeome commzarisdicated that the
avoidance of such codon pairs is mainly relatethéotranslational mechanisms since
the avoidance was stronger in ORFeomes than inngesioSince many of the type
nnUAnNN codon pairs contained out-frame UAA and UgtGp codons this avoidance
could be the result of reducing premature trarshatermination after frameshifting
events. Interestingly, type nnUAnn codon pairs am@d those out-frame stops also
in antisense frame — the fact that we cannot exgbaised on mechanisms known
today. Furthermore, none of the avoided codon penstained out-frame UGA
suggesting that the UA dinucleotide could have irtga role separately from the
out-frame stops.

Among the conserved avoided codon pairs occurreal @JUAGU — part of
previously known programmed frameshifting site gasgt telomerase subunit EST3
(CUU-AGU-U) (Morris and Lundblad, 1997).

In addition, mononucleotide repeats known to cafisemeshifting were

discovered among avoided codon pairs being morededan ORFeomes than in
genomes.
The number of codon pairs significantly preferradmore than half of organisms
studied was smaller than the number of avoided rquors (81 compared to 207).
Although the effect sizes were similar in both greuthis suggests that it is more
important for the cell to avoid possibly harmfuhtexts during protein synthesis than
to enhance the number of optimal codons. The megquéntly preferred codon pairs
contain the patterns nnGCnn, nnCAnn or nnUnCn.

Codon frequencies correlate with tRNA concentraj®uggesting that this is a
major selective force on codon usage patterns (lkanl981; Dong et al., 1996; EIf
et al., 2003). The codon pair preferences can apexhby several different molecular
mechanisms. One is the possible decrease of fraftngglerrors through avoidance
of mononucleotide repeats (Wagner et al., 1990yiGlret al., 2003; Baranov et al.,
2005). In addition, it has been suggested that magdmtext might be influenced by
certain structural constraints imposed by two tRNsupying the ribosomal P- and
A-sites (Smith and Yarus, 1989; Irwin et al.,, 199Buchan et al., 2006).
Unfortunately, we currently have very limited infeation about the details of
interaction between different tRNAs with the ribos® (Korostelev et al., 2006;
Selmer et al., 2006; Dunham et al., 2007), whidcludes further extension of this
hypothesis.

In addition, it is possible that codon pair prefexes help to distinguish actual
reading frames from noncoding sequences similarlgddon preferences in some
speciesHowever this question would need much longer amalgysd at the moment
we can only speculate that our observations coddblseme predictive power to gene
prediction algorithms in future.
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CONCLUSIONS

By using bioinformatical methods we have charazegtiseveral aspects of regulatory
and coding sequences related to the efficiency rotem synthesis. The most
important conclusions of current thesis are:

1. In Escherichia coli the base pairing potential of the SD sequence thad
expression level of a gene is not correlated suggeshe importance of
enhancer sequences acting co-operatively with Sjuesee in translation
stimulation.

2. Strong alanine preference exists at the beginnirtgghly expressed proteins
in different organisms possibly related to the s$tational efficiency and/or
protein stabilization

3. A universal set of similarly biased codon pairssexiin different genomes
from three domains of life. Most of the codon pdies/e stronger bias on the
ORFeome level than the corresponding hexanucleotidere on the whole
genome level, suggesting that translation has agréanfluence on codon pair
biases than molecular mechanisms that shape tloenjeDNA in general.
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SUMMARY IN ESTONIAN

Translatsiooni efektiivsust mdjutavad jarjestuse motiivid

Valke, igas rakuprotsessis osalevaid makromolekslgmteesitakse translatsiooni
kaigus vastavalt informatsioonile mRNAs. Transtadsi, geeniekspressiooni viimane
etapp, toimub ribosoomis. Ribosoomi Uldine struktuja funktsioon on
konserveerunud kogu eluslooduses, mis viitab ontzkoka translatsiooni
regulatsioonisignaalide konserveerumisele. Samiasuto translatsiooni initsiatsioon
kui kdige olulisem valgustinteesi efektiivsust madtapp bakterites ja eukariiootides
erineva mehhanismi alusel. Eukartootides alustabsdom mMRNA skaneerimist
MRNA 5’ otsast kuni jouab startkoodonini. Baktegitseondub ribosoom enne
startkoodonit asuvale nn. Shine-Dalgarno (SD) slngele aluspaardumise kaudu SD
jarjestuse ja 16S rRNA 3’ otsa nukleotiidide valfahtiSD jarjestus). Eelnevad
eksperimentaalsed t66d on naidanud vaid nodrka labsreoni SD:antiSD
aluspaardumise tugevuse ning geeni ekspressioemtsgahel.

Kaesoleva doktoritod esimeses tulemuste osas opeldatud SD:antiSD
interaktsiooni pikkuse ning geenide ekspressiosaiteete vahelise seose silico
analuiisi  tulemused Escherichia coli's. Selgus, et keskmine SD:antiSD
aluspaardumise pikkus oli séltumata geeni ekspresgasemest sama. See tulemus
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ning kaasautorite poolt tehtud eksperimentaalsediésid lubavad oletada, et SD
jarjestus toimib koostdds enhanser jarjestuseghekmion enne SD jarjestust asuv
A/U nukleotiidide rikas regioon.

Startkoodoni efektiivseks aratundmiseks esineb drakt valke kodeerivate
jarjestuste startkoodoni iUmbruses veel teisigiiglunhotiive. NaiteksEscherichia coli
valke kodeerivates jarjestustes on sagedamini \esfsestartkoodonile jargnevaks
koodoniks AAA, mida on seostatud kdrge ekspressiasemega. Lisaks on koérge
ekspressioonitasemega geenide alguses leitud madvade koodonite sagedast
esinemist. Nende Uleesindatus kodeeriva jarjestalgeises viitab voimalikule
regulatsioonimehhanismile. Eukartiootide startkoodonbruses on kirjeldatud nn.
Kozaki consensus GCC(A/G)CCAUE; mis on vajalik efektiivseks translatsiooniks.

Kéesoleva doktoritoo teiseks eesmargiks oli voralgenoomika abil otsida
ning kirjeldada voimalikke konserveerunud motiivalke kodeerivate jarjestuste
alguses. Uuringute tulemusena leiti, et nii bakeerarheate kui eukartiootide kdrge
ekspressioonitasemega geenides esineb mitte AAAldwte, vaid GCN koodonite
tugev uleesindatus vahetult startkoodonile jargnesadonina. See tulemus langeb
kokku osaga Kozaki konsensusest ning viitab sellele hoolimata erinevatest
translatsiooni initsiatsioonimehhanismidest on gtarsiooni initsiatsiooniregiooni
jarjestus ule eluslooduse rohkem konserveerunudeiiarvatud. Uheks vdimalikuks
seletuseks GCN  koodonite  Uleesindatusele teise dwod  kdrge
ekspressioonitasemega geenides on peptiduil-tRERuEkumise mehhanism, mille
kaigus peptidutl-tRNA vabaneb ribosoomist ennedegseg katkestab normaalse
valgustinteesi. Sage peptidutl-tRNA arakukkuminéstak efektiivset translatsiooni.
Peptidiil-tRNA arakukkumine toimub sagedamini véiglsikeste peptiidide puhul
ning koodonitelt, mis sisaldavad A nukleotiidi es®es vOi teises positsioonis. Seega
voib GCN koodonite eelistamine teise koodonina e#atud eesmaéargiga vahendada
voimalikke peptidtutl-tRNA &arakukkumise sindmusei@CN koodonperekond
kodeerib aminohapet alaniin. Uuritud organismidergkd ekspressioonitasemega
valkudes esines tGepoolest ka tugev alaniini Ubeladus teise aminohappena. Alaniin
on Uks kuuest valke stabiliseerivast aminohappedbakterites kui eukartiootides.
Kuigi alaniini Uleesindatus oli kbige universaalsgm tugevam, selgus, et kdrge
ekspressioonitasemega valkude teises positsiocgigusl ko&iki stabiliseerivaid
aminohappeid oluliselt rohkem kui organismi kdigalkude teises positsioonis.
Seetbttu on vbéimalik, et avastatud nukleotiidi jeoo#onieelistused korge
ekspressioonitasemega geenide teises koodonpositsiovGivad olla seotud ka
aminohapete selektsiooniga.

Kaesoleva doktoritod kolmandaks eesmargiks oli daurkoodonkonteksti
konserveerumist eluslooduses. Nimelt lisaks koodeuntuse eelistustele, kus
erinevaid sunonuddmseid koodoneid kasutatakse kivdées jarjestustes erineva
sagedusega, on ka koodonpaaride sagedused eririgksgbrimentaalsed tulemused
on aga naidanud, et koodonkontekst voib translatsiefektiivsuse ja tapsusega olla
veelgi tugevamini seotud kui koodonkasutus. Siiski seni arvatud, et erinevates
organismides on koodonkonteksti eelistused erine@aoktorit6éd raames tehtud
analliisid naitasid, et hoolimata Uldisest koodotddsti spetsiifilisusest erinevates
organismides, esineb siiski teatud hulk koodonpaane on Ule kogu eluslooduse
valke kodeerivates jarjestustes sarnaselt valditdid eelistatud. Enamus sellistest
koodonpaaridest olid tugevamini valditud voi eeligstd valke kodeerivates
jarjestustes vorreldes vastavate heksanukleotgdidegenoomides. See Vviitab
translatsioonilisele selektsioonile koodonpaaridasutuses. Samas ei ole tegu
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dipeptidiide kasutusest tulenevate mustritega, kugrade moju oli tulemustest vélja
taandatud.

Kdige sagedamini vélditud koodonpaarid sisaldasidstneid nnUAnNN,
nnGGnn, nnGnnC, nnCGCn, GUCCnn, CUCCnn, nnCnnA [aCG3nn. Kdige
sagedamini eelistatud koodonpaarid sisaldasid eidstmGCnn, nnCAnn, nnUnCn.
Valditud nnUAnn koodonpaaridest sisaldasid paljudargd véaljaspool diget
lugemisraami asuvaid UAG ja UAA stoppkoodoneid. t8ee vOib nnUANN
koodonpaaride valtimine tuleneda enneaegse trarsai terminatsiooni valtimisest
raaminihke tagajarjel. Seni teadmata pdhjustelldasad nnUAnn taupi valditud
koodonpaarid raamist valjas asuvaid stoppkoodokai@ntisense ahelal. Samas ei
sisaldanud Ukski universaalselt valditud koodonpd@A stoppkoodonit, mis viitab,
et UA dinukleotiidil v8ib olla stoppkoodonitest &eseisev roll.

Uheks koodonkonteksti eelistuste ja valtimiste pétgjaks on pakutud
ribosoomis paikneva kahe tRNA omavaheline strukiiner sobivus. Kahjuks on
tanaseks hetkeks olemas vaga vahe informatsioomvate tRNAde omavaheliste
interaktsioonide kohta ribosoomis, mis lubaks séugoteesi testida avastatud
koodonkonteksti konserveerumise suhtes.
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