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INTRODUCTION	  
Protein synthesis is a fundamental function of cells. The molecular machinery of 

protein synthesis is highly conserved. Most of its components have clearly 

recognizable homologs in Archaea, Bacteria and Eukaryota. The machinery involved 

in this process consists of the ribosome (70S in bacteria and 80S in eukaryotes) and 

its attendant molecules (e.g. translation factors, RNA, mRNA). The general 

translation cycle comprises initiation, elongation, termination and recycling phases. 

The translation factors assist the ribosome in each of these phases. Translation 

factors that utilize GTP are called translational GTPases (trGTPases). Four large 

families of trGTPases - IF2/eIF5B, SelB/eIF2γ, EF-Tu/EF-1α and EFG/EF-2 - can be 

distinguished (Leipe et al. 2002). For each of those families one ancestral gene 

existed in the last universal common ancestor (LUCA) (Leipe et al. 2002). Additional 

trGTPase families appeared later. These additional families, which have diverse 

biological roles in bacteria, are: LepA, TypA, RPP(tetR), RF3 and ATPS2 (CysN). 

Considering protein domain order and sequence similarities, the LepA, TypA, 

RPP(tetR) and RF3 genes probably arose after duplications of one ancestral gene 

from the EFG/EF2 family (Caldon et al. 2001; Inagaki et al. 2002; Connell et al. 2003; 

Owens et al. 2004; Qin et al. 2006). This suggests that during bacterial evolution an 

ancient branch of the EFG/EF2 family was a source for protein synthesis-related 

GTPases with new functional roles.   

Analyses of microorganisms with complete genome sequences reveal remarkable 

variation of protein synthesis machinery among bacteria. We used data from 

complete genomes to characterize the phylogenetic distribution of trGTPases and to 

investigate the evolution of elongation factor G in greater detail. We describe the 

dynamics of gene evolution in terms of duplication, pseudogenization and fixation.  

Bacteria have several response systems to rapid changes in the environment. One 

class of these systems includes the toxin-antitoxin (TA) modules. TA systems have 

important roles in the physiology of cells in their natural habitats. They are involved in 

biofilm formation, quorum sensing and multidrug resistance (Gerdes and Wagner 

2007; Yamaguchi and Inouye 2011). Several toxins of the TA systems of Escherichia 

coli target protein synthesis. The toxin of the mqsR/ygiT TA system affects protein 

synthesis by cleaving mRNA. The phylogenetic distribution of the mqsR/ygiT toxin-

antitoxin system in bacteria is another topic studied within this dissertation. 
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1.	  REVIEW	  OF	  LITERATURE	  	  
 

1.1. Protein synthesis 

1.1.1.	  Introduction	  
Protein synthesis is vital for all living cells, being the last phase of expression of 

information stored in protein-coding genes. It is performed by the ribosome, a highly 

conserved RNA-protein complex. The prokaryotic ribosome consists of two 

asymmetric subunits: 30S and 50S. The small (30S) subunit of the E. coli ribosome 

is formed from 16S rRNA and approximately 20 proteins. The large (50S) subunit is 

assembled from 23S and 5S rRNA and over 30 proteins. The ribosome is not the 

sole component of the protein synthesis system. Messenger RNA (mRNA) brings 

coded information to the ribosome, transfer RNAs (tRNAs) supply the ribosome with 

amino acids, and translation factors assist the ribosome through the different phases 

of protein synthesis. 

Despite differences in ribosome composition and the number of translation factors 

among the three domains of life (Archaea, Bacteria and Eukaryota), the basic 

reactions and translation factors are conserved in all of them (Caldon et al. 2001; 

Caldon and March 2003). The conserved core set of genes indicates that protein 

synthesis already existed in the last universal common ancestor (LUCA), a 

hypothetical life form that was the ancestor of all three domains (Leipe et al. 2002). 

The variety of functions in present-day organisms is mostly caused by gene 

duplication(s) followed by the acquisition of a new function by a duplicate – evolution 

by gene duplication.      

1.1.2.	  Phases	  of	  protein	  synthesis	  and	  “classical”	  translation	  factors	  
The protein synthesis cycle comprises four phases: initiation, elongation, termination, 

and recycling. In the first step, the initiation complex is assembled from the 30S and 

50S subunits, mRNA and initiator tRNA (Figure 1). In the elongation phase of protein 

synthesis, the ribosome decodes the mRNA sequence in discrete steps (codons) 

using tRNAs as substrates. During elongation the ribosome actively synthesizes 

proteins through three sequential steps: (i) decoding, (ii) peptide bond formation, and 

(iii) translocation (Figure 1). Translation enters the termination phase when the stop 

codon in mRNA reaches the A site. In this phase the synthesized peptide is released 

from the ribosome, yielding the post-termination ribosomal complex.  
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Figure 1. The four phases of protein synthesis: initiation, elongation, termination, and 

recycling. Modified from Sohmen et al. (2009) (Sohmen et al. 2009).  

 

In the recycling phase, the post-termination ribosome is dissociated into its subunits.  

tRNA and mRNA also leave the ribosome, thus preparing it for another round of 

initiation.  

Throughout the protein synthesis cycle, the ribosome is assisted by a large number 

of accessory proteins called translation factors. The protein synthetic machinery is 

assembled during the initiation of translation – a multistep process that in bacteria is 

controlled by initiation factors IF1, IF2 and IF3 (Gualerzi and Pon 1990). In the 

elongation phase, elongation factor Tu (EF-Tu) assists the A-site occupation by an 

aminoacyl-tRNA (aa-tRNA) (Rodnina et al. 1995), and elongation factor G (EFG) 

facilitates translocation (Agrawal et al. 1998). To keep the EF-Tu pool charged with 

GTP, the elongation factor Ts (EF-Ts) is also required. The termination phase is 

facilitated by three release factors - RF1, RF2 and RF3. RF1 and RF2 recognize a 

stop codon in an empty A-site, thereby releasing the peptide chain from the 
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ribosome, whereas RF3 is required for release of RF1 and RF2 from the ribosome 

(Freistroffer et al. 1997). The recycling phase is carried out by the ribosome recycling 

factor (RRF) and EFG (Hirashima and Kaji 1973; Karimi et al. 1999).  

 

1.2. P-loop GTPases 

1.2.1.	  Introduction	  
Proteins that bind and hydrolyze GTP are called G proteins (GTPases). P-loop 

GTPases and related ATPases share the P-loop fold, which is one of the most 

common protein folds constituting 10-18% of all protein-coding gene products 

synthesized by the cell (Koonin et al. 2000). Structurally, P-loop NTPases are α/β 

proteins comprising a central part consisting of β-sheets (mostly parallel) surrounded 

by α-helices. The P-loop itself is a relatively small loop – a structural element 

determined from its crystal structure (Figure 3). At the sequence level, the P-loop 

NTPases contain a characteristic set of conserved motifs: G1 (also referred to as 

Walker A motif), G2, G3 (also referred to as Walker B), G4 and G5 (Walker et al. 

1982). The G1 motif (Walker A) is located in the P-loop. The P-loop GTPases are 

divided into two major classes: TRAFAC and SIMBI (Leipe et al. 2002). The TRAFAC 

class contains enzymes involved in the four phases of protein synthesis (initiation, 

elongation, termination, recycling), signal transduction, cell motility, and intracellular 

transport (Leipe et al. 2002). 

1.2.2.	  GTPase	  cycle	  	  
All G proteins go through the same cycle of reactions. Binding and hydrolysis of GTP 

drive transitions through three conformational states: OFF (GDP-bound), 'empty', and 

ON (GTP-bound) (Bourne et al. 1991). Hydrolysis of GTP triggers conformational 

changes. These changes are confined primarily to two segments, called the “switch 

regions” (Figure 2) (Milburn et al. 1990). The transition between the ON and OFF 

states is usually induced by the binding of a GTPase-activating protein (GAP) or 

association of the G protein with a particular conformational state of its cognate 

target or effector (Figure 2). After GTP hydrolysis, the G protein is in the OFF (GDP-

bound) state and needs to be recharged with GTP. Guanine nucleotide exchange 

factor (GEF) stimulates release of the bound GDP, which is followed by GTP binding 

to the GTPase. 
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Figure 2. Schematic representation of GTPase cycle and its regulation. GAP and 

GEF regulate the GTPase cycle of a G protein by adapting it to cellular needs.    

 

1.2.3.	  GTPase	  domain	  
The GTP binding domains, also known as G domains, share a common and well 

conserved structural core (Sprang 1997; Vetter and Wittinghofer 2001). This core 

has the proper nucleotide-binding structure and can be characterized at the 

sequence level by five conserved motifs: G1-G5 (Figure 3). 

 

Figure 3. The GTPase domain of EFG.  The conserved motifs, G1, G2, G3, G4, and 

G5, of EFG (PDB code 1WDT) are shown in blue. Structural elements such as the P-

loop, switch I and switch II are blue, red and yellow, respectively. G’ insertion 

(between G4 and G5) is shown as a ribbon, with the rest of the structure shown as a 

cartoon. Walker A and Walker B are early names for conserved motifs G1 and G3, 

respectively.  
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Some of these motifs (G1, G2, G3) scan phosphates, discriminating between the tri- 

and bi-phosphate forms of the bound nucleotide. Motifs G4 and G5 scan the 

nucleoside part of nucleotide (Table 1)(Bourne et al. 1991). 

Table 1. The consensus motifs of the GTPase domain in trGTPases (Bourne et 

al. 1991) 

Motif Consensus Function 
G1 GXXXXGKT/ST Interactions with α- and β-phosphates 
G2 RGITI Binding of γ-phosphate and Mg2+ 
G3 DXPGH Indirect Mg2+ binding 
G4 NKXD Recognition of G nucleotide 
G5 GSAL/K Binding of nucleotide 

 

In Ras proteins it has been shown that GAP interacts with the G2 motif during 

GTPase activation (Bourne et al. 1991). Since GAP differs among GTPase families, 

the G2 motif has also evolved to adapt to these changes. For trGTPases, the GAP 

role is carried out by the large ribosomal subunit (Ramakrishnan 2002; Nilsson and 

Nissen 2005). There the trGTPases bind to overlapping sites on the ribosome 

(Ramakrishnan 2002; Nilsson and Nissen 2005). In the three domains of life, the 

exclusively conserved consensus sequence of the G2 motif is "RGITI".  

1.2.4.	  Towards	  the	  identification	  of	  the	  GTPase	  activation	  mechanism	  of	  trGTPases	  	  
The ribosome is a large macromolecular complex. Several parts of the ribosome 

have been discussed as the candidate GAP for the trGTPases (more on trGTPases 

in section 1.3.). In their early study, Hamel et al. (1972) showed that the ribosome 

loses its GTP-inducing property when 50S subunits are incubated in high salt 

conditions (Hamel et al. 1972). The protein fraction removed by this treatment is 

primarily the L7/L12 stalk of the 50S ribosomal subunit. EM studies have shown that 

this part of the ribosome interacts with the negatively charged region of the G’ 

subdomain of EFG (Diaconu et al. 2005; Nechifor et al. 2007). Later studies have 

confirmed that L7/L12 dimers are necessary for stimulating the GTPase activity of 

the translation factors, particularly EF-Tu and EFG (Savelsbergh et al. 2000; Mohr et 

al. 2002). The L7/L12 stalk is important for the recognition of IF2*GTP during 

initiation of translation (Huang et al. 2010).  However, L12 is not a GTPase activating 

protein (GAP) for trGTPases (Huang et al. 2010). In the absence of L12, the binding 

of EF-Tu to the ribosome is severely impaired (Kothe et al. 2004) and the reduction 
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of GTPase activity is probably related to reduced affinity between the ternary 

complex and the ribosome. Savelsberg et al. (2005) demonstrated that mutating 

conserved amino acids on the surface of the L7/L12 C-terminal domain (CTD) leads 

to strong inhibition of EFG turnover, with little effect on rapid single-round GTP 

hydrolysis and translocation (Savelsbergh et al. 2005).   

Recently, two high-resolution (3.2 - 3.6 Å) X-ray structures of the ribosome-bound 

trGTPases have been determined (Gao et al. 2009; Voorhees et al. 2010). In the first 

structure, EFG was trapped in the post-translocational state of the ribosome (Gao et 

al. 2009). In the second structure, EF-Tu was bound to the ribosome with aa-tRNA 

and a non-hydrolysable GTP analog (Voorhees et al. 2010) (more detail in section 

1.3.4.). Voorhees et al. (2010) suggested that A2662 (part of the sarcin-ricin loop 

[SRL]) of the 23S RNA corresponds to the GAP (Voorhees et al. 2010). They 

reported that A2662 interacts with His84 (numeration according E. coli EF-Tu) and 

suggested that His84 acts as a general base, which activates the water molecule that 

attacks the γ-phosphate and hydrolyses GTP (Voorhees et al. 2010). The suggestion 

that His84 is a general base was criticized by Liljas et al. (2011). They considered it 

unlikely on several grounds, arguing that in the particular protein environment the His 

residue is most likely to be positively charged, making it unable to act according to 

the mechanism proposed (Liljas et al. 2011). In addition, replacing His84 with Ala84 

reduces the rate of GTP hydrolysis (in ribosome-bound ternary complex) by six 

orders of magnitude (Daviter et al. 2003), whereas mutation to Gln84 has a moderate 

effect (Daviter et al. 2003).  

 

1.3. Translational GTPases (trGTPases) 

1.3.1.	  Introduction	  
Traditionally, trGTPases are defined as proteins in which the GTPase activity is 

induced by the large ribosomal subunit (Ramakrishnan 2002; Nilsson and Nissen 

2005). Alternatively, computational methods that analyze information hidden in the 

protein sequence and structural data can be used to determine the relationship 

between different proteins and their families. Phylogenetic methods and profile-

based algorithms extend the set of trGTPases by incorporating members that are 

evolutionarily related. Bacterial trGTPases consist of the families IF2, EF-Tu, SelB, 

EFG, LepA(EF4), RF3, RPP(tetR), TypA(BipA), and ATPS2(CysN). Each protein 

family carries specific function(s) of which some are irreplaceable (vital) to the cell 

whereas others have effects under specific conditions or environments. Translational 
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GTPases carrying the same functions in archaea and eukaryotes are usually 

designated by the prefixes “a” and “e”, respectively (Table 2).  

Table 2. Translational GTPases of bacteria, archaea and eukaryotes 

Bacteria Archaea Eukaryota 
IF2 aIF5B eIF5B 
- aIF2 eIF2 
EF-Tu aEF-1A eEF-1A 
SelB aSelB eSelB 
EFG aEF2 eEF2 
RF3* - eRF3* 
LepA(EF4)  - - 
RPP(tetR) - - 
TypA(BipA) - - 
ATPS2(CysN)** - - 
- - Hbs1p 
- - Ski7p 
- - Snu114p 
- - Ria1p 

* RF3 originated from EFG in bacteria, whereas eRF3 came from eEF1-1A in 

eukaryotes 

** ATPS2(CysN) was acquired laterally and it functions independently of the 

ribosomes. (This table is based on data from an article by Leipe et al. (2002) (Leipe 

et al. 2002) and the thesis of Atkinson (Atkinson 2008)).  

Some proteins that carry a clear signature of trGTPases have acquired a new 

function, which is not (directly) related to protein synthesis. For example, ATPS2 

(CysN) is known to function as a large subunit of ATP sulfurylase in bacteria; 

Snu114p in eukaryotes is a part of the eukaryotic spliceosome. The full list of 

trGTPases in all three domains is shown in Table 2. I use the term trGTPases 

throughout this work to refer to bacterial trGTPases, unless otherwise indicated. 

1.3.2.	  Three	  essential	  sets	  of	  trGTPases	  
Most of our knowledge about protein synthesis has come from a few well-studied 

model organisms. It is natural that the classical set of trGTPases is based on protein 

synthesis in E. coli. These trGTPases include IF2, EF-Tu, EFG, and RF3, which 

together cover the four phases of protein synthesis (Figure 1). 
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An overlapping but slightly different set of trGTPases emerges when ancestral 

branches of GTPases are identified. Analyzing evolutionary relationships of P-loop 

GTPases led to the definition of four groups of trGTPases traceable to LUCA (Leipe 

et al. 2002). These big families are: IF2/eIF5B; SelB/eIF2γ; EF-Tu/EF-1α; and 

EFG/EF-2 (Leipe et al. 2002). Unexpectedly, SelB/eIF2γ was detected in LUCA, but 

RF3 was not. Does this mean that the function catalyzed by SelB is more conserved 

in bacteria than the function catalyzed by RF3? SelB brings selenocystein tRNA to 

the ribosome by recognizing the stop codon UGA in a specific context (Bock et al. 

1991). However, SelB has a patchy distribution across the tree of life and only 20% 

of bacteria have it (Romero et al. 2005; Margus et al. 2007).   

With the completion of sequencing of the first bacterial genome (Haemophilus 

influenzae) in 1995, biology entered the genomic era. By reading the “DNA book” 

written in a four-letter alphabet we can determine most building blocks, pathways, 

regulators and other vital components essential for the living cell. Using the entire 

genome sequence it is also possible to determine which genes are absent from the 

genome of a given species. Comparing the repertoire of complete genomes enables 

us to see the whole picture from another perspective than is prescribed by studying a 

model organism or a single system. This was the approach we took in determining 

the distribution of trGTPases in bacteria (Margus et al. 2007). One of the results that 

emerged was a definition of the core set of trGTPases in bacteria, which comprises 

IF2, EF-Tu, EFG and LepA(EF4) (Margus et al. 2007). LepA is almost ubiquitous 

among bacteria (Margus et al. 2007). Eukaryotic LepA originated in chloroplasts or 

mitochondria. A back-translocase function has been assigned to LepA (Qin et al. 

2006), but its exact effect(s) are still debatable (Liu et al. 2011). 

1.3.3.	  Domain	  architecture	  of	  trGTPases	  	  	  
Domains are the basic building blocks of protein structure and they are also the basic 

evolutionary units. Most domains have conserved and specific “signatures” that can 

be converted to sequence models and stored in specific motif databases, e.g. Pfam 

or InterPro (Hunter et al. 2009; Punta et al. 2011). These models can be used to 

assign functional annotation to novel protein sequences.       

Translational GTPases are multi-domain proteins comprising at least three different 

domains. All trGTPases have two domains in common - the GTPase domain and 

domain II. Additional domains are characteristic of a specific family and/or shared 

between closely related families (Figure 4). The primary sequence of the GTPase 

domain is well conserved. Domain II structure is conserved, but the primary 
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sequence can differ considerably among families. 

 
Figure 4. Domain architecture of bacterial trGTPases. Colored boxes indicate 

domains defined in Pfam; dashed line boxes represent InterPro domains. Domains 

are given as they are in Pfam/InterPro: N – IF2_N; asso – IF2_assoc; GTP_EFTU – 

GTP_EFTU; D_II - GTP_EFTU_D2; D_III – GTP_EFTU_D3; IF-2 – IF-2; wing2 – 

SelB-wing 2; wing3 – SelB-wing 3;  EFG_IV – EFG_IV; EFG_C – EFG_C; LepA_C – 

Lepa_C. Domain names in the figure and InterPro are: G_III_V – Elongation fac 

G/III/V; and EF1A-initC – Transl elong EF1A/init IF2. Asterisks denote members of 

the core set of trGTPases in bacteria.  

 

Additional domains can be specific to a family (such as IF2_N in IF2 or Wing 

domains in SelB) or several families. Family-specific domains are usually located in 

either the N or C terminus and carry a specific function for the family. For example, 

SelB-wing domains recognize mRNA loop structures (SECIS element). The SECIS 

element specifies the UGA stop codon that is used for incorporating selenocystein 

(Soler et al. 2007). The LepA C terminal domain (LepA_C) has a unique structure 

with currently unknown function (Evans et al. 2008). 

The shared presence of additional domains can predict relationships among these 

families. The third domain of EF-Tu (GTP_EFTU_D3 in Pfam) is involved in binding 

of charged tRNA and EF-Ts (Wang et al. 1997). The same domain is seen in another 

elongation factor, SelB.  Its function is similar to EF-Tu, but is restricted to a specific 

case – incorporating selenocystein. Another universally conserved family is the 
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EFG/EF-2 family (Leipe et al. 2002). The EFG and RPP(tetR) domain structure is 

identical, but their functions are different. While EFG catalyzes translocation, 

RPP(tetR) helps to overcome translation arrest caused by the antibiotic tetracycline 

(Chopra and Roberts 2001; Roberts 2005). There are three more families (RF3, 

TypA, and LepA) among the trGTPases that contain one or both of the additional 

domains first described in EFG. These domains are G_III_V and EFG_C.  

1.3.4.	  Structures	  of	  trGTPases	  and	  their	  functional	  complexes	  
One of the first trGTPases whose structure was determined at high resolution (2.7Å) 

was EF-Tu (1EFM) (Jurnak 1985). It took almost 10 years to resolve the structure of 

another elongation factor, EFG (AEvarsson et al. 1994; Czworkowski et al. 1994). 

Comparison of the EF-Tu and EFG structures revealed similarities between the 

GTPase domain and the second domain, but also pointed to differences. The part of 

the structure formed by EFG domains III, IV, and V is absent from EF-Tu (AEvarsson 

et al. 1994; Czworkowski et al. 1994). However, when the EF-Tu structure with 

bound aa-tRNA and nucleotide was determined, similarities between the overall 

shape of the ternary complex and EFG became evident (Nissen et al. 1995). Thus, 

three domains (III, IV, V) of the protein EFG mimic the tRNA part of the ternary 

complex (Figure 5) (Nissen et al. 1995; Nyborg et al. 1997).  

From the EFG structure it was also proposed that a conformational change in EFG, 

coupled with GTP hydrolysis, drives the translocation by physically chasing the newly 

formed peptidyl-tRNA from the ribosomal A site to the P site (Abel and Jurnak 1996; 

Nyborg et al. 1997).  
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Figure 5. Macromolecular mimicry between the ternary complex and EFG. The 

ternary complex is to the left and EFG is to the right. In EFG, domain III (not fully 

resolved) is just below domain II. Domain V is to the left of domain III, while the 

elongated domain IV is at the bottom. The figure is adapted from Nyborg et al. (1997) 

(Nyborg et al. 1997).   

The finding that the structure of the ternary complex is similar to the structure of EFG 

led to the molecular mimicry hypothesis (Ito et al. 1996; Nakamura 2001). This 

proposes that different translation factors evolved independently, but acquired similar 

structures determined by the nature of their overlapping binding sites on the 

ribosome (Nakamura 2001; Ito et al. 2002).  

More structures of bacterial trGTPases have gradually become available. The 

structure of EFG-2 of T. thermophilus appeared in PDB in 2005. Also, the X-ray 

structures of ATPS (Cys N), RF3, SelB, LepA, and TypA/BipA have been resolved 

during the last seven years (Table 3) (Mougous et al. 2006; Gao et al. 2007a; Soler 

et al. 2007; Evans et al. 2008; Nocek et al. 2008). 

 

 

 

 

 



	   23	  

Table 3. Structures of trGTPases and their complexes with the ribosome  

 

(*) structures of EFG representing the EFG I subfamily 

(**) structures of EFG representing the EFG II subfamily 

(***) 70S ribosome complex with EFG and fusidic acid (FA) 

(****) 70S ribosome complex with EF-Tu and un-cleavable GTP analog (GDPCP) 

(*****) 70S ribosome complex with RF3 and GTP 

PDB 
code Year Description Reference 

1efm 1985 EF-Tu with GDP Jurnak, F. et al., Science 1985 

1efg* 1994 EFG with GDP Czworkowski, J. et al., EMBO J 1994  

1elo* 1994 EFG without nucleotide  Aevarsson, A.  et al., EMBO J 1994  

1ttt 1995 EF-Tu*Pht-tRNA*GDPNPN Nissen, P. et al., Science 1995 

1wdt** 2005 EFG with GTP Connell, S.R. et al., Mol. Cell 2007 

1zun 2006 ATPS (CysN) heterodimer Mougous ,J.D. et al., Mol. Cell 2006 

2h5e 2007 RF3*GDP Gao, H. et al., Cell 2007 

2ply 2007 SelB*SECIS-RNA Soler, N. et al., JMB 2007 

3cb4 2008 LepA(EF4) Evans, R.N. et al., PNAS 2008 

3e3x 2008 TypA/BipA C-terminal part PDB entry 

2wri, 

2wrj 2009 70S*EFG*GDP*FA*** Gao et al., Science 2009 

2xqd, 

2xqe 2010 70S*EF-Tu*GDPCP**** Voorhees et al., Science 2010 

3sfs, 

3sgf 2012 70S*RF3*GTP***** Zhou et al., RNA 2012 
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High-resolution crystal structures of both the large and small ribosomal subunits have 

led to an invaluable framework for studies of different phases of protein synthesis 

(Ramakrishnan 2002; Schmeing and Ramakrishnan 2009). Combining X-ray 

structures and EM reconstructions provided a structural explanation of translocation. 

A model was proposed in which tRNA movements are facilitated by head-swivel 

ratcheting and unratcheting motions of the ribosome (Gao et al. 2009; Ratje et al. 

2010). Resolving the structure of the 70S ribosome with the ternary complex (EF-

Tu*aa-tRNA*GDPCP) deepens our understanding of GTP hydrolysis by the 

trGTPases (Voorhees et al. 2010). 

1.3.5.	  Evolutionary	  relationship	  of	  trGTPases	  	  
In their study of the classification and evolution of P-loop GTPases, Leipe et al. 

(2002) defined four superfamilies of trGTPases, which can be traced back to LUCA 

(Leipe et al. 2002). However, the whole set of trGTPases extends to nine families, 

indicating that some of them appeared later during bacterial evolution (Margus et al. 

2007).  

  

Figure 6. Unrooted tree of bacterial trGTPases. The bootstrap consensus tree 

inferred from 100 replicates is taken to represent the evolutionary history of the taxa 

analyzed.  The percentage of replicate trees in which the associated taxa clustered 

together in the bootstrap test (100 replicates) is shown next to the branches 

(Felsenstein 1985). The analysis involved 85 amino acid sequences. All positions 

containing gaps and missing data were eliminated. There was a total of 208 positions 

in the final dataset. Evolutionary analyses were conducted in MEGA5 (Abdulkarim 

and Hughes 1996; Tamura et al. 2011). 
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Constructing phylogeny reveals closely related proteins and enables one to define a 

set of families sharing the same ancestral composition. For example, RPP, RF3 and 

EFG are neighbor branches (Figure 6). The relatedness of these three families is 

well supported (bootstrap value 78) but branching order is not resolved. When 

interpreting such trees we must consider that they have been built on the basis of 

domains shared among all families, in this case the GTPase domain and domain II. 

Information about possible additional similarities between subsets of families is not 

reflected on the tree (Figure 6). Although EFG shares three additional domains with 

RPP(tetR) and only one additional with RF3, this information is not used for building 

the sequence-based tree and the branching order is not reliably resolved (Figure 6). 

LepA(EF4) and TypA actually share two additional domains (G_III_V and EFG_C) 

with EFG, despite being evolutionarily rather distant from it. The phylogenetic tree of 

trGTPases (Figure 6) does not conflict with the composition of domains; it rather 

lacks the power to resolve branching order.  

There have been numerous examples where gene duplication and a following 

acquisition of new function have been shown to be the most parsimonious 

explanation for the appearance of additional families (Hughes 1994; Force et al. 

1999; Van de Peer 2004; Wojtowicz and Tiuryn 2007). Usually, such additional 

families carry out some auxiliary function and are needed in specific phases of life or 

under certain environmental conditions. Phylogenetic profiling, where non-uniform 

and/or patchy distribution has been found to be characteristic of additional 

trGTPases, supports this assumption (Margus et al. 2007). In this context, the 

presence of LepA in almost all bacterial genomes is remarkable. Another surprising 

observation was the rare presence and patchy distribution of SelB – a member of an 

ancient trGTPase family (Leipe et al. 2002; Margus et al. 2007). The key components 

of the Sec-decoding trait are SelA, SelB, SelD, and YbbB. This trait is preferred by 

bacteria that inhabit high temperature and anaerobic environments and is rare in 

bacteria living at low temperatures and under aerobic conditions (Zhang et al. 2006). 

The rare presence of SelB today could be therefore related to the bias in choosing 

bacterial species for sequencing. Another reason for the rarity of SelB could be 

general geological changes on Earth – the appearance of oxygen and cooling of the 

planet’s mantle. 

ATPS2 (CysN) is an unusual trGTPase. The gene for CysN evolved from an 

archaeal or eukaryotic elongation factor 1α (EF-1α) by LGT, followed by a change in 
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the function of the gene (Inagaki et al. 2002). Bacterial CysN retained its GTPase 

activity, which regulates production of APS (adenosine-5'- phosphosulfate), but it lost 

the requirement for the ribosome to trigger GTP hydrolysis. CysN probably has no 

function in translation (Mougous et al. 2006). 

1.3.6.	  trGTPase	  functions	  under	  debate	  
The primary functions of universally conserved trGTPases are well known and have 

been discussed above. They also appear to have “moonlighting” functions – 

additional activities unrelated to their main role in the cell. For example, acting as a 

chaperone by mediating protein folding might be an additional function of IF2, EF-Tu 

and EFG (Caldas et al. 1998; Caldas et al. 2000).  

In some cases the primary function is still (or again) debated. One such protein is the 

classical trGTPase RF3. RF3 catalyzes a GTPase-dependent release of type I 

release factor (RF1 or RF2) from the ribosome indicating a function related to 

termination (Freistroffer et al. 1997; Zavialov et al. 2001). However, Zaher and Green 

(2011) showed that RF3 maintains a post-peptidyl-transfer quality-control (PT QC) 

mechanism by which mistakes are assessed retrospectively, i.e. after formation of 

the peptide bond (Zaher and Green 2011). The key event is the induction of RF3-

dependent termination – induced by the end of translation cycle or by mistakes made 

during translation. 

The elongation cycle in protein synthesis is characterized by oscillation of the 

ribosome between the pre-translocation (PRE) and post-translocation (POST) 

complexes (Figure 1). Qin et al. (2006) showed that LepA can catalyze reverse 

translocation in vitro, i.e. LepA binds to the POST state and back-translocates stalled 

ribosomes under high Mg2+ concentration (Qin et al. 2006). They proposed that the 

primary effect, increased activity of the reporter protein, is caused by increased 

fidelity under an elevated Mg2+ concentration.  However, Shoji et al. (2010) 

demonstrated that the ΔLepA strain does not show increased frequency of miscoding 

or frameshifting errors under normal or stress conditions, which indicates that LepA 

does not contribute to the fidelity of translation (Shoji et al. 2010). LepA function is 

probably related to proper protein folding by decreasing the rate of synthesis (Shoji et 

al. 2010; Liu et al. 2011). The observed effects are higher under suboptimal and/or 

stress conditions when membrane-bound LepA is released into the cytoplasm (Pech 

et al. 2011). Thus the mechanism enables the cell to respond quickly to sudden and 

dramatic changes in the environment, which explains why LepA is so well conserved 

in bacteria.  
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The fact that some bacteria have multiple genes coding for EFG has been known for 

some time, but it has been unclear whether the copies have similar or different 

functions. Connell et al. (2007) showed that EFG-2 in T. thermophilus is active in 

poly(U) synthesis, i.e. it does not differ significantly from EFG-1 (Connell et al. 2007). 

Suematsu et al. (2010) demonstrated that in the spirochaete Borrelia burgdorferi EF-

G1 is a translocase, whereas EF-G2 is exclusively a recycling factor (Suematsu et al. 

2010). In this context, the absence of any link between protein synthesis and EFG-2 

in the actinobacterium Mycobacterium smegmatis was somewhat unexpected. They 

performed several experiments and demonstrated that: (a) MsEFG2 knockout had no 

effect under several growth conditions; (b) MsEFG2 did not complement MsEFG1; 

(c) MsEFG2 bound GTP, but GTP hydrolysis was not induced by the ribosome 

(Seshadri et al. 2009). The results obtained from the M. smegmatis system 

suggested a novel (unknown) function and therefore testing it and/or finding an 

adequate assay proved to be complicated. Which route the different EFG paralogs 

had taken, and which processes have shaped the EFG family during evolution, 

remain intriguing questions.  

 

1.4. Toxin-antitoxin system in bacteria 
Toxin–antitoxin (TA) operons are common among free-living bacteria. The toxin 

products of TA operons target various cellular functions that regulate cell growth and 

death (Gerdes et al. 2005). TA systems have important roles in the physiology of 

cells in their natural habitats, including biofilm formation, quorum sensing, formation 

of persistors, and multidrug resistance (Gerdes and Wagner 2007; Yamaguchi and 

Inouye 2011). In E. coli, cellular targets of the TA system toxins include the protein 

synthesis machinery (mRNA, tRNA, 30S, and 50S ribosome subunits), DNA 

replication and the cytoskeleton (Tan et al. 2011). The main target of TA systems in 

E. coli is protein synthesis. The same is probably true for other bacteria. 

A toxin-antitoxin system usually consists of two closely linked genes that together 

encode both a stable toxic protein and a short-lived inhibitor of the toxin. On the 

basis of the function of the antitoxin, all TA systems have been classified into three 

groups: types I, II and III. In type I, toxin expression is inhibited by binding of an 

antisense antitoxin RNA to the toxin-coding transcript (Gerdes and Wagner 2007). 

The type II TA system utilizes a protein antitoxin to keep the toxin inactivated via 

protein-protein interaction. In type III, RNA binds to the toxin protein, resulting in a 
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non-toxic RNA-toxin complex (Fineran et al. 2009). Most of the known TA systems 

belong to type I or type II.  

Inactivation of the antitoxin in response to stressful changes in the environment 

activates the toxin. Chromosome-encoded TA systems might act as bacterial 

programmed cell death executioners. In E. coli the MazE-MazF system leads to cell 

death (Hazan et al. 2004) under a wide range of stressful conditions. Other workers 

have shown that TA toxins are activated in response to stress and starvation, but cell 

death does not seem to follow, i.e. the toxins induce reversible growth arrest 

(Christensen-Dalsgaard et al. 2010). The RelB-RelE TA system’s involvement in 

response to amino acid starvation is one of the best-studied examples. RelE toxin is 

activated by proteolysis of the RelB antitoxin, which leads to cleavage of ribosome-

associated mRNA, followed by overall shutdown of translation and an increase in the 

concentration of aa-tRNAs (Christensen and Gerdes 2004). Adjustment of nutrient 

consumption and increased translational fidelity allow bacteria to survive starvation.  

Thus, TA toxins seem to be global regulators of metabolism, growth and division.  

TA operons are commonly described as mobile genetic elements (Sevin and Barloy-

Hubler 2007). Owing to their mobility, TA systems show a patchy distribution among 

prokaryotic genomes. Some genomes contain tens of TA systems whereas others 

have none (Sevin and Barloy-Hubler 2007; Shao et al. 2011). For example, there are 

eight well-characterized TA systems (Yamaguchi and Inouye 2011) and 29 putative 

TA systems in E. coli (Sevin and Barloy-Hubler 2007; Shao et al. 2011). 

Approximately 60 putative TA systems have been predicted in the genome of 

Mycobacterium tuberculosis, whereas only two have been detected in the genome of 

its non-pathogenic counterpart, M. smegmatis (Pandey and Gerdes 2005). This 

indicates that the TA systems are also related to bacterial pathogenicity.  

Identification and annotation of TA systems is problematic due to the small size of 

the toxin and antitoxin genes. Moreover, most of these genes may have atypical GC 

content and codon usage. To overcome these obstacles, specialized software for 

identifying TA gene pairs has been developed (Sevin and Barloy-Hubler 2007; 

Guglielmini et al. 2008). These tools use the information from already-characterized 

TA families and are useful for detecting missing ORFs in two-gene TA operons. A 

more complex task was undertaken by Makarova et al. (2009), who analyzed 750 

completed genomes of bacteria and archaea and predicted 12 new families of toxins 

and 13 families of antitoxins (Makarova et al. 2009). All these predictions, results of 

related experimental work and extensive literature information from PubMed were 
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gathered into one database - TADB (http://bioinfo-mml.sjtu.edu.cn/TADB/) (Shao et 

al. 2011). TADB is an integrated database that provides comprehensive information 

about Type II toxin–antitoxin (TA) loci (Shao et al. 2011). It contains information 

about 10,753 Type II TA gene-pairs identified within 1240 prokaryotic genomes 

(Shao et al. 2011). However, the function is unknown for a strikingly large fraction of 

TA systems (or TA-like systems) and many more cellular targets will be identified for 

TA systems that have yet to be characterized.  

 

1.5. Evolution by gene duplication 

1.5.1.	  Introduction	  

To define evolution briefly, I have chosen to cite Arthur Lesk who wrote “Evolution is 

the change over time in the world of living things” (Lesk 2008). An efficient way to 

create something new in this world is often to modify something that already exists, 

i.e. by duplicating and modifying genetic material. One of the earliest observations of 

duplication of genetic material was made by Bridges in 1936. He reported the 

doubling of a chromosomal band in a mutant fruit fly that had extremely small eyes 

(Bridges 1936). A potential role of gene duplication in evolution was suggested and 

various scenarios of duplicate gene evolution were proposed later (Stephens 1951; 

Nei 1969). In his influential book “Evolution by gene duplication”, Susumo Ohno 

popularized this idea further (Ohno 1970). He reasoned that a single copy is enough 

for the gene to function and therefore extra copies would be redundant (Nei 1969; 

Ohno 1970). A new copy accumulates mutations more freely and most often 

becomes a pseudogene (in the process of pseudogenization). Ohno suggested that 

during the accumulation of neutral mutations, a new gene function can occasionally 

appear that will be maintained by selection (the process of neofunctionalization) 

(Ohno 1970). His ideas started to flourish from the late 1990s, when the first genome 

sequences were completed and the prevalence and importance of gene duplication 

was clearly demonstrated. However, empirical data also suggested that many more 

gene duplicates are preserved than predicted by the neofunctionalization model. To 

explain this conundrum, Hughes (1994) and later Force et al. (1999) proposed 

models that introduced the idea of splitting the functions of the original gene between 

paralogs (the process of subfunctionalization) (Hughes 1994; Force et al. 1999). 

Since then, many models of gene duplication have been proposed. However, 

because of the lack of a comprehensive framework, it is tedious to discriminate 

among these different models.   
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1.5.2.	  Classification	  of	  gene	  duplication	  models	  
The aim of this section is to give a short overview of the classification of gene 

duplication models, based on phases leading to the stable preservation of a 

duplicated gene according to Innan and Kondrashov (2010) (Innan and Kondrashov 

2010). It provides the common framework for discussing gene duplication models 

and brings out the main differences among the categories. It does not discuss each 

model in depth. 

In competing for evolutionary preservation, all genetic changes undergo three main 

stages: (a) origin through mutation, (b) fixation phase, and (c) preservation phase. 

Gene duplications follow this scenario with one addition: the acquisition of 

differences between the copies can alter the chance that both copies will be 

preserved. Approximately a dozen models of gene duplication have been proposed 

over the years. Many of them describe the phase of acquisition of differences 

between gene copies as critical for the preservation of a new gene. This phase is 

referred to as the fate-determination phase (Figure 7). Figure 7 is based on the 

neofunctionalization model, but with small modifications it can be generally 

applicable. 

 

 

Figure 7.  Phases leading to the stable preservation of a duplicated gene. Adapted 

from Innan and Kondrashov (2010) (Innan and Kondrashov 2010).  

Focusing on the selective forces and evolutionary events at different stages in the life 

history of the duplication, Innan and Kondrashov (2010) claimed there is substantial 

overlap in the descriptions and predictions of different models (Innan and 

Kondrashov 2010).  They grouped several models in the same category (Innan and 

Kondrashov 2010). The scenario in which a new duplicate gene pair (A–A) will be 

fixed in the population of a diploid organism with probability 1/2N over an average of 

4N generations defines the models belonging to category I (e.g. popular neo- and 
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subfunctionalization models). Models in this category assume that duplication would 

not affect fitness (fixation of the copy being a neutral process). As a consequence, 

gene duplication must go rapidly through the fate-determination phase. When it does 

not, one of the copies becomes pseudogenized, i.e. a race takes place between 

pseudogenization and the appearance of an advantageous mutation and its 

selection. This category contains three models: (a) the neofunctionalization model of 

Ohno (Ohno 1970), (b) the duplication–degeneration–complementation (DDC) model 

of Force et al. (1999)(Force et al. 1999), and (c) the specialization models (or EAC) 

of Hughes (1994) (Hughes 1994).  

The models in categories II and III involve positive selection. In these cases the 

fixation probability is higher and the fixation time is shorter than in the neutral case of 

category I (Innan and Kondrashov 2010). For models under category II, the 

duplication itself is advantageous. Reasons for this type of adaptation can be: (a) 

masking a deleterious mutation (Kondrashov et al. 2002), (b) a beneficial increase in 

gene dosage (Clark 1994), and (c) the possibility of the immediate appearance of a 

new function (Lynch and Katju 2004). Category III comprises models in which 

duplication occurs in a gene for which population-genetic variation exists. When 

polymorphisms become immediately fate-determining mutations they promote 

fixation of the duplicated copy. Duplication and fixation of a fate-determining mutation 

is almost instantaneous. Therefore, these models do not have a fate-determining 

phase. Models in this category are: (a) the adaptive radiation model, (b) the 

permanent heterozygote model and (c) the multi-allelic diversifying selection model 

(Innan and Kondrashov 2010). Finally, the dosage balance model is classified as the 

sole member of category IV. There is no fixation phase in the dosage balance model 

because the fixation of a duplicated copy occurs simultaneously with other events, 

e.g. large scale or whole genome duplication (Papp et al. 2003). 

1.5.3.	  Gene	  duplication	  models	  and	  functional	  state	  of	  a	  new	  gene	  copy	  	  
The aim of this section is to create a bridge between gene duplication models and 

the “final” (functional) states of gene copies. I will also illustrate the difference 

between these two terms. 

There are many more models describing the fate of genes after duplication than 

there are functional states of a new gene copy after it becomes fixed in a population. 

Considering the function of the original and the function of its copy, the models 

described above can be reduced to a few “final states” (insofar as “final state” makes 

sense in the context of evolution) (Innan and Kondrashov 2010). These possibilities 
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include: (a) the function of the original is retained and its copy has a new function 

(e.g. neofunctionalization); (b) the two functions of the original gene are split between 

paralogs (e.g. subfunctionalization); (c) both copies have the same function (as in 

positive dosage); (d) both copies have multiple functions (diversifying selection).  

Gene duplication models describe the path that starts from the event of gene 

duplication and ends with fixation, i.e. “final state”. As we can see, there are more 

different gene duplication models than “final states”. To determine a specific model 

one needs to test whether natural selection has influenced the fate of the duplicated 

gene. There is a good theory for measuring selection in protein coding genes. 

According to this theory, synonymous substitutions are considered neutral and non-

synonymous substitutions are considered not neutral. Therefore, most of these 

models estimating substitutions per synonymous site (dS) and substitutions per non-

synonymous site (dN) estimate the presence or absence of selection from the ratio of 

dN to dS  (Suyama et al. 2006). Selective pressure is measured by the ratio ω = dN/dS. 

When non-synonymous substitutions occur at the same rate as synonymous ones 

and ω = 1, substitution has no effect on fitness, suggesting neutral evolution. If an 

amino acid change is deleterious then ω<<1 (purifying selection). When a change 

offers a selective advantage, non-synonymous changes are fixed at a higher rate 

than synonymous and ω>1 (positive selection). For example, in the case of Ohno’s 

classical neofunctionalization model, the expected selective pressures for the original 

and a copy in the fate-determining phase will be ωoriginal<<1 and ωcopy=1, respectively. 

There is asymmetry in a pair (original gene and its copy) in this phase. When a new 

gene copy reaches the preservation phase, purifying selection is applied to both and 

ωoriginal = ωcopy<<1.  

Substitutions per synonymous and non-synonymous site can reliably be determined 

when the corresponding sites are unsaturated. This condition is satisfied for most 

gene families in higher eukaryotes. For bacteria, the same is true only for a tiny 

fraction of the genes that resulted from recent duplication(s) and are shared among 

closely related species. For most gene families in bacteria (phyla/class level), 

synonymous sites are saturated. This makes it impossible to estimate dS and dN and 

to use models of gene evolution.  When estimating selection of a gene becomes 

complicated, the amino acid sequence can be used instead. Protein sequences are 

presented as 20 symbols (amino acids) and saturation is reached much later than for 

gene sequences (4 symbols). Proteins with more divergent sequences can be used 

for analysis – they still contain information. The problem is that there is no good 

general model for protein sequences, in contrast to gene codon sequences. The root 
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of the problem is that protein evolution and the relationship of primary sequence to 

structure and function are poorly understood.  

However, when synonymous sites in a new gene copy become saturated, it is likely 

that this gene/protein has reached the preservation phase. Consequently, the 

problem can, at least partially, be reduced to discriminating among four functional 

states (“final states”). These functional states are: (a) the function of original is 

retained while the new copy has a novel function; (b) two functions of the original 

gene are split between paralogs; (c) both copies have the same function; (d) both 

copies have multiple functions.  

1.5.4.	  Positions	  related	  to	  functional	  change/shift	  
The aim of this section is to elucidate the evolutionary dynamics of a new gene copy 

and how it is related to the amino acid residues that are involved in functional 

changes in the protein sequence. 

An amino acid residue is functionally important if it is evolutionarily conserved. Two 

types of conservation changes have been associated with functional change (Figure 

8B). Type I conserved changes result in a shift of a group-specific amino acid 

property (Lichtarge et al. 1996; Gu 2001). Such divergence is exemplified by a 

radical shift in the physico-chemical property of an amino acid. Type I conserved 

positions are also known as cluster-specific residues (Lichtarge et al. 1996; 

Madabushi et al. 2004), “constant-but-different” (Gribaldo et al. 2003), and type-II 

functionally divergent positions (Gu 2006).   

Another class of conservation changes result in a site-specific rate shift (Gu 1999; 

Knudsen and Miyamoto 2001; Gaucher et al. 2002). A typical case is an amino acid 

residue that is highly conserved in a subset of homologous genes but becomes 

variable in another subset of homologous genes. There are two scenarios leading to 

similar site-specific rate shifts. According to the first scenario, selection will be lost in 

a position that is under selection in the original copy, i.e. before duplication. 

Alternatively, a position with weak (or missing) selection that evolves under purifying 

selection results in conservation in this position. Typically, it is difficult to determine 

the pre-duplication pattern of selection and therefore no distinction can be made 

between these two scenarios. However, when the original copy of a gene has 

retained its original function(s) and selection pattern, it is possible to make the 

distinction. In other words we can determine which positions become conserved or 

relaxed in a new gene (Figure 8B). In terms of further functional characterization, 

such discrimination is very helpful. 
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Figure 8.  (A) Two groups of genes formed after duplication. Early and late designate 

the corresponding stages of gene evolution. (B) The mutation rate in the early and 

late stages of protein evolution after duplication. The evolutionary rate can increase 

after the gene duplication event for a functional shift-related change, resulting in 

changed functional constraints between groups A and B. Modified from Gu (1999) 

(Gu 1999).  

 

It is commonly believed that after a gene duplication event, the evolutionary rate can 

increase (Li 1997). This phase is called fate-determination by Innan and Kondrashov 

(2010) (Innan and Kondrashov 2010) or the early phase by Gu et al. (1999) (Gu 

1999) (Figures 7 and 8, respectively). During this phase, mutations carrying the 

essence of new/changed function will appear. These changes lead a new copy to the 

preservation phase (late phase in Figure 8). On an evolutionary time-scale, it helps 

us to estimate when a specific function or property appears in a group of organisms. 

The importance of a preserved gene is proportional to the depth of duplication events 

in the universal tree of life. Being close to LUCA means longer survival on the stage 

of evolution and is also proportional to the importance of the gene.  

 

1.6. Bioinformatician’s basic toolbox for studying protein families 

1.6.1.	  Molecular	  data	  and	  data	  quality	  
In computational biology, one of the main types of data is sequence data (sequence 

of DNA or protein). Another type of data is knowledge about sequences – what they 

are doing, what is their function, and how their expression is regulated – also referred 



	   35	  

to as annotation. Nowadays, most annotations of new sequences are transferred 

from those whose functions are determined experimentally to novel sequences using 

sequence similarity as the criterion.  

Unfortunately, the available sequence data do not represent the entire complexity of 

living organisms. Only a tiny fraction of all organisms have been sequenced. 

Comparison of phyla distribution of the completed bacterial genomes reveals that 

from 1,740 genomes in the database 46% belong to the Proteobacteria (795) and 

25% to Firmicutes (435), leaving ~30% to the other 18 phyla described to date (NCBI 

2012). This indicates that fully sequenced genomes are highly biased towards a few 

common phyla. The diversity of 16S rRNA sequences obtained directly from different 

environments suggests that our current knowledge about bacteria describes only a 

small fraction of the diversity (Wu et al. 2009). Therefore, computational biology must 

deal with highly biased sequence data where reliable functional annotation is 

relatively rare. A bioinformatics approach enables one to extend functional 

annotation among homologous sequences to a certain degree. 

1.6.2.	  Sequence	  alignment	  and	  database	  searching	  
Many different algorithms have been created to solve sequence alignment problems. 

Various criteria can also be used to classify these algorithms, e.g. by performing 

tasks, the methods can be divided into database searching algorithms, multiple 

sequence alignment algorithms and many other types of alignment algorithms.  

The most commonly used program for similarity searches is BLAST (Basic Local 

Alignment Search Tool) (Altschul et al. 1997). BLAST scans a query sequence 

against a sequence database. As a measure of the significance of each “match”, the 

alignment between query and database sequence is given a score (measured in bits) 

and an E-value, which is the number of expected matches with the same or better 

bit-score, but without biological significance. The ability of BLAST to detect distant 

homologs is restricted by the information residing in the sequences compared. The 

“rule of thumb” states that it is safe to consider sequences homologous when the 

proportion of identical positions in alignment is >70% for DNA/RNA and >30% for 

proteins. However, in many cases the real homologs are beyond this safe threshold 

and cannot be reliably determined. More sensitive methods use models instead of 

single sequences to detect homology. The models are built from multiple sequence 

alignments of homologous sequences and include position-specific information about 

variation for a specific protein family. These methods are slower because they need 

more steps than a BLAST search. This multistep procedure is included in the 
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program PSI-BLAST, where the search begins with a simple BLAST and subsequent 

searches are performed by an algorithm utilizing a position-specific scoring matrix 

(PSSM) (Altschul et al. 1997). A search is iterative: when new sequences are 

identified they are added to the model and the next search iteration is performed with 

an updated PSSM until no more sequences are found. PSSM does not allow gaps 

(insertions and deletions) to be introduced into the model. Therefore it is best to use 

PSSMs for sequence families with limited numbers of insertions and deletions. 

However, during evolution, newly appearing insertions and deletions are quite 

common and therefore a searching strategy that considers such events is required. 

The program package called HMMER has been developed to overcome these 

restrictions (Eddy 1998). This model is based on states of probabilities associated 

with each position of alignment, and, in addition to amino acids, it contains insertion 

or deletion as an additional state for each position (Eddy 1998). Because of this 

feature, HMM models are more sensitive than PSSMs for finding distant homologs, 

and have been widely used to detect functional domains and to annotate sequences 

with unknown function (Sonnhammer et al. 1997). HMM models of functional protein 

domains are collected into the Pfam database, which is based on manually curated 

and often structure-based alignments of homologous sequences (Bateman et al. 

2004).   

1.6.3.	  Multiple	  sequence	  alignment	  
Multiple sequence alignment (MSA) is one of the most widely used methods for 

simultaneous comparison of protein or nucleic acid sequences (Edgar and Batzoglou 

2006). To build an MSA makes sense when a collection of evolutionarily related 

sequences has been assembled, and one wants to identify features shared by these 

sequences.  

Exact algorithms for calculating optimal MSA require a significant amount of 

computer memory and computational time. The time and memory requirement 

increases exponentially with the number of sequences in MSA. These algorithms are 

able to align up to 10 sequences. Most MSA computing programs are based on 

heuristics – simplifications to split this complex problem into smaller tasks. One such 

simplification is known as a progressive alignment algorithm – computing pairwise 

alignments between all sequences and then constructing one big multiple alignment 

by progressively joining them. The best-known implementation of a progressive 

alignment algorithm is CLUSTALW (Thompson et al. 1994), which gained its 

popularity because it was one of the first user-friendly heuristic MSA algorithms 

(Thompson et al. 1994). However, it does not refine an already computed alignment 
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when new sequences are added, so there is concern about readjusting gaps 

(insertions/deletions in the alignment). A number of powerful algorithms and their 

implementations have recently been developed. Iterative methods have been 

implemented in MAFFT (Katoh et al. 2005) and MUSCLE (Edgar 2004), where the 

progressive alignment step is followed by an iterative procedure to improve the 

overall alignment. MAFFT scales well in multiprocessor architecture, making it a 

useful tool for calculating high quality alignments from a large number (400-800) of 

protein sequences. Consistency-based methods such as PROBCONS (Do et al. 

2005) and T-COFFEE (Notredame et al. 2000) combine progressive alignment with a 

different scoring system. T-COFFEE is probably the most accurate consistency-

based program (Edgar and Batzoglou 2006). Early versions of T-COFFEE could 

align up to 50 sequences when run in accurate mode, but new implementations 

(version 8.6) have enhanced its performance for an input of up to 200 protein 

sequences. The T-COFFEE package also contains template-based methods 

(Expresso and PSI-Coffee) for MSA. A template-based method uses external 

information, such as X-ray/NMR structures, to improve MSA accuracy. Use of such 

methods depends on the availability of external information, e.g. on protein structure.  

1.6.4.	  Estimating	  conservation	  
A properly constructed MSA is the prerequisite and cornerstone for detecting residue 

conservation in a protein family. MSA helps to detect the most important amino acids 

required for proper functioning of proteins in that family. Conserved positions/regions 

can be estimated visually by inspecting MSA with user-friendly MSA viewers such as 

JALVIEW (Clamp et al. 2004) or BioEdit (Hall 1998). Consensus sequences are 

often used to generalize large alignments. It is much easier to compare consensus 

sequences than alignments. However, consensus sequences have many flaws. As a 

result, biologically relevant signals are often missed. Information theory provides a 

mathematically robust way of presenting sequence conservation quantitatively in bits 

of information using sequence logo graphics (Schneider and Stephens 1990). 

Sequence logos concentrate on the order of predominance of the residues, their 

relative frequencies, and information for each specific amino acid at every position in 

a single graphic. Web Logos is the web interface for constructing sequence logos 

using MSA as the input (Crooks et al. 2004).  

All these tools help to extract signals from sequence alignments and to interpret the 

results. Shannon’s information theory states that the information content of an event 

is inversely proportional to its expectation, i.e. it increases with unexpectedness 

(Shannon 1948). Therefore, conserved positions in otherwise highly divergent 
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backgrounds (30% conserved positions) are more likely to be functionally important 

residue(s) than those in less divergent backgrounds (80% conserved positions).  

1.6.5.	  Tree-‐inferring	  algorithms	  
Nowadays, there are hundreds of different programs for inferring phylogenetic trees 

on the basis of four or five different algorithms. The most important algorithms are: 

distance based (neighbor joining – NJ and UPGMA), maximum parsimony (MP), 

maximum likelihood (ML) and Bayesian inference (BI). The distance-based 

algorithms (NJ and UPGMA) are the simplest and also the quickest for inferring a 

tree. They are able to deal with more than 10,000 sequences. Pairwise distances are 

computed for the whole set of sequences from which a tree is to be computed. The 

problem with distance-based algorithms is that the richness of information gathered 

in sequences is reduced into a single value – distance. MP, ML, and BI are discrete 

data methods. Basically, they construct trees for every column in the alignment and 

choose the one that fits best with most columns. An MP algorithm searches for the 

tree that explains the data with a minimal number of amino acid or nucleotide 

substitutions. MP algorithms are useful for inferring trees from DNA and coding 

regions, but they cannot use amino acid substitution matrices and are therefore not 

used for protein sequences. An ML algorithm weighs the probability of all possible 

substitutions (amino acid or nucleotide) according to various models of evolution. 

The likelihood is then the probability of the data, given a tree and the model. The 

original MP and ML algorithms were relatively slow and were able to compute trees 

from approximately 50 sequences. Modern ML algorithms take advantage of 

improved tree-searching heuristics and parallel architecture. For example, the 

program RAxML (version 7.2.8) is able to compute a phylogenetic tree for 25,000 

sequences within two weeks (Stamatakis 2006). 
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2.	  RESULTS	  

2.1. Aims of the study  
We have investigated families related to the protein synthesis machinery with our 

main focus on classical GTP-hydrolyzing translation factors – trGTPases – taking an 

evolutionary perspective. 

The specific foci of the work presented are: 

1. Analysis of phylogenetic distribution of trGTPases in bacteria 

a. Develop a reliable methodology for detecting trGTPases from data of 

completed bacterial genome sequences  

b. Determine the phylogenetic distribution of trGTPases in bacteria 

c. Define the core set of trGTPases in bacteria 

 

2. Evolutionary and functional characterization of EFG paralogs in bacteria 

a. Determine phylogenetic relationships of EFG paralogs  

b. Determine phylogenetic distribution of EFG subfamilies in bacteria 

c. Characterize the EFG II subfamily in terms of its evolution, 

distribution, and conserved positions most probably related to 

functional changes 

 

3. Analysis of phylogenetic distribution of mqsR and ygiT, the new toxin-

antitoxin system in bacteria 

a. Adapt phylogenetic profiling methodology to analysis of mqsR and 

ygiT families in bacteria 

b. Determine the phylogenetic distribution of mqsR and ygiT 
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2.2. Phylogenetic distribution of trGTPases in bacteria (I) 

2.2.1.	  Elaborating	  methodology	  for	  detecting	  trGTPases	  
Completed genome sequences, associated predictions and annotation of open 

reading frames (ORFs) serve as a valuable source of information for bioinformatics 

studies. However, the quality of annotation in public databases is often unreliable. 

For example, genes can have different names in different bacteria. Often, the starting 

position of a gene has not been determined correctly. To overcome these 

shortcomings, a methodology that can deal with errors of these types was 

developed. Our methodology integrates analyses of protein and genome sequences. 

 

Figure 9. Workflow scheme of the methodology for detecting trGTPases. Activities 

and data flow are shown by arrows; data are shown in boxes and decision schemes 

are in rhombi. 

At the protein level, the key features are the sensitivity and selectivity of homology 

detection. This is achieved by using hidden Markov models (HMM) for searching and 

grouping, and validating the results using tree-based methods (Figure 9). At the 

genome level, TBLASTN searches ensured that un-annotated ORFs are not missed. 

This methodology is universal and can be adapted to the analysis of any protein 

family.   

2.2.2.	  The	  phylogenetic	  profiling	  of	  trGTPases	  
The phylogenetic profiling of trGTPases consists of the following steps: (a) 

determining trGTPases for each genome, (b) grouping these trGTPases into families, 

(c) computing 16S rRNA-based species tree for bacteria, (d) mapping trGTPase 

families into a species tree, (f) deriving conclusions based on the distribution of 

trGTPase families and associated data such as genome size and/or rRNA operon 

copy number. Assuming that a given completed genome sequence is correct, our 

methodology is able to determine whether protein families are present or absent in a 

genome. This type of analysis covered 191 bacteria with completed genome 
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sequences. One of the main results of this work was a definition of the core set of 

trGTPases for bacteria, comprising IF-2, EF-Tu, EFG and LepA(EF4). Unexpectedly, 

this set does not contain RF3. We discovered that RF3 occurs in 62% of the bacteria 

we examined. The absence of RF3 did not correlate with either genome size or copy-

number of rRNA operons. The presence of additional trGTases (RPP[tetR], RF3, 

SelB, TypA, CysN/NodQ) correlates with genome size. Additional GTPases are rare 

in small genomes (<1.8Mb). Another interesting finding was related to duplications of 

the core set trGTPases – EF-Tu and EFG. When EF-Tu copies were almost 

identical, EFG paralogs appeared to be substantially divergent. The wide distribution 

of divergent paralogs raises many interesting questions, some of which have been 

addressed in our later study. 

 

2.3. Phylogenetic distribution of mqsR and ygiT, the new toxin-antitoxin 
system in bacteria (II) 
To detect the ability of a genome to encode the MqsR-ygiT toxin-antitoxin system, 

sequence similarity searches by BLAST were carried out against sequences from the 

completed bacterial genomes database (NCBI RefSeq) using MqsR as a query. 

Among the 914 genomes examined, 40 were found to contain sequences 

homologous to E. coli MqsR. Most hits were found in gamma- and 

betaproteobacteria, but some putative MqsR toxins were also detected in 

alphaproteobacteria, deltaproteobacteria, Chlorobi and a species of Acidobacteria. 

Most of the genomes contained a single gene for MqsR. Interestingly, three copies of 

the MqsR gene were found in Geobacter uraniireducens. 

 

2.4. Evolutionary and functional characterization of EFG paralogs in 
bacteria (III) 
The EFG gene family in bacteria is highly divergent. The EFG paralogs share only 

30–40% identity at the protein level. Furthermore, no experimental data relating to 

characterization of EFG paralogs were available at the time of the study. 

2.4.1.	  Identification	  and	  characterization	  of	  EFG	  subfamilies	  
Phylogenetic trees for determining EFG subfamilies were constructed using 

Bayesian inference (BI) and maximum likelihood (ML) methods. We showed that 

EFG duplicate genes form four subfamilies within the phylogenetic tree: EFG I, 

spdEFG1, spdEFG2, and EFG II (Figure 10). 
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Figure 10. Phylogenetic tree of the four subfamilies of EFG duplications. The tree 

was constructed using MrBayes (BI) and RaxML (ML). Sequences from the same 

subfamily are compressed and shown as triangles.  

To characterize the evolutionary processes that shape the EFG family, we analyzed 

the genome context of EFG paralogs and evolutionary events such as recent 

duplications, lateral gene transfer (LGT) and gene losses via pseudogenization. The 

results of these analyses and EFG subfamily information were mapped on to the 

species tree of bacteria, thereby giving a comprehensive picture of the events 

associated with the evolution of this gene family (Margus et al. 2011). 

2.4.2.	  Analysis	  of	  the	  EFG	  II	  subfamily	  
We characterized the EFG II subfamily in terms of sequence conservation, 

appearance of insertions and deletions (indels) in multiple sequence alignment, and 

the evolutionary relationships among members of the EFG II subfamily. Comparison 

of the EFG II subfamily with the well-studied EFG I revealed some differentially 

conserved amino acids, which are good candidates for addressing questions about 

the functional properties of EFG II. 

2.4.2.1.	  Phylogenetic	  structure	  of	  the	  EFG	  II	  subfamily	  
The distribution of EFG among bacteria showed that each phylum contains at least 

one group with EFG II as an additional EFG. The phylogenetic tree of EFG II reveals 

clearly distinguishable phyla/class specific groups called sub-subgroups of EFG II. 

However, this tree has two peculiarities. First, sequences from two different sub-
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subgroups are separated by a large distance in most cases. The approximate 

estimate by MrBayes is 1.5 changes per position. Second, EFG II sequences from α-

proteobacteria and Cyanobacteria formed one well-supported branch, i.e. EFG II 

sequences originating from two different phyla belong to the same sub-subgroup. 

Most of these sub-subgroups are also supported by specific indels determined from 

multiple sequence alignment. 

2.4.2.2.	  Comparison	  of	  the	  EFG	  I	  and	  EFG	  II	  subfamilies	  
Comparison of these subfamilies was based on sequence conservation information 

extracted from multiple sequence alignments and expressed as sequence logos 

(Figure 11). Comparison was made at four different levels: (a) overall conservation, 

(b) conservation of domains, (c) conservation of GTPase domain motifs G1-G5 and 

(d) EFG II-specific conserved positions differing from EFG I.  

  

Figure 11. Sequence logos of the EFG I and EFG II subfamilies. Conservation 

threshold was set to 3 bits. Position conservations of 4.3, 3.3, and 2.8 bits 

correspond to 100%, 50-50%, and 33-33-33% of specific amino acid(s) conservation 

in a given position. As an example, two type I conserved positions are indicated by 

yellow boxes and four type II conserved positions by pink boxes. The bit-score also 

depends on the number of sequences; when fewer than 20 sequences are used 

even 100% conservation does not give a reasonable bit-score.  

The high diversity within the EFG II subfamily is predominantly caused by the high 

variation within the GTPase domain, domain II and domain III. Such a low 

conservation indicates that the first three domains have been evolving under 

principally different constraints, favoring divergence in the EFG II and homogeneity in 
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the EFG I subfamilies. Analysis of the GTPase domain showed that short motifs 

forming the GTP binding pocket, G1, G3, G4, and G5, are conserved. Intriguingly, 

the trGTPase-specific consensus RGITI in the G2 motif is relaxed. Instead of RGITI, 

sub-subgroup-specific variants of the G2 motif could be detected (Margus et al. 

2011).  

EFG II-specific conserved positions were split into two categories. The first consists 

of five positions at which different amino acids are conserved in the EFG I and EFG II 

subfamilies (type I conserved positions). Each of these five positions is associated 

with substantial changes in physico-chemical properties. The second category 

consists of seven positions that are relaxed in EFG I, but are under stronger 

selection in the EFG II subfamily (type II conserved positions). Detecting higher 

conservation in some positions of EFG II than EFG I was unexpected, especially 

considering the greater divergence of the EFG II subfamily. The locations of type I 

conserved positions are restricted to the first two domains, the GTPase domain and 

domain II, whereas type II conserved positions are more uniformly distributed 

throughout EFG.  

All these EFG II-specific positions (types I and II) were mapped on to the EFG 

structure and the EFG–ribosome complex structure. The importance and possible 

functional consequences of these EFG II-specific conservations will be discussed in 

the following section.  
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3.	  DISCUSSION	  
 

3.1. Bioinformatics methodologies, data quality and presumptions 
Reliable methodology is an important part of any scientific study. This is the case for 

bioinformatics research where custom-made solutions are a common practice. When 

a protein family can be detected easily and distinguished from other homologous 

families, a simple BLAST search will be sufficient. A relevant case is searching for 

the MqsR homologs in bacteria. However, when there are many homologous protein 

families and the borders between those families are undefined, more sophisticated 

methodology is required (for example in characterizing trGTPases). Such 

methodologies often use out-groups so they can be more sensitive without sacrificing 

selectivity. They are also able to find traces of pseudogenes and can deal with wrong 

annotations. A methodology of this kind is not a single program; it is a combination of 

programs and filters as illustrated in Figure 9. Even then, the validity of our 

conclusions about the gene repertoire in a genome relies on certain presumptions. 

One presumption is that a given genome sequence is complete and correct. In most 

genomic regions this is true, but not for toxic and non-clonable DNA. Kimelman et al. 

(2012) analyzed 393 microbial genomes and mapped >15,000 genes residing in 

cloning gaps, many of which were toxins (Kimelman et al. 2012). This indicates that 

the number of toxin genes in bacteria had been underestimated. It is beneficial that 

the next generation sequencing methods (NGS) do not need the cloning step, so 

toxic genes/DNA can be discovered. 

 

3.2. Phylogenetic distribution of trGTPase genes 
Analyzing the distribution of a specific gene is directly linked to the estimation of its 

importance to the cell. Widely distributed genes are more important for a wider 

spectrum of organisms than those with a patchy distribution. By reporting the 

presence or absence of a gene in a genome and arranging the data according to the 

species tree, clade-specific genes can be revealed. In the case of trGTPases, IF2, 

EF-Tu, and EFG are universally conserved. Those proteins are present in all three 

domains of life. LepA appears to be bacteria-specific; it is not present in archaea or 

eukaryotes. The question is: what is the specific feature of bacterial ribosomes that 

distinguishes them from archaeal/eukaryotic ribosomes so that they need a specific 

GTPase factor for proper functioning? LepA's function as a back-translocase was 

questioned by Liu et al. (2011), who demonstrated that LepA competes with EFG for 
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binding to the PRE complex and not to the POST complex (Liu et al. 2011) (see also 

1.3.5. on debated trGTPase functions). LepA is located in membranes and is 

released into the cytoplasm under suboptimal and/or stress-conditions (Pech et al. 

2011).  

Existing models of protein synthesis have armed us with an understanding of its 

mechanisms, which take place in a logical order to produce a complete protein 

(Figure 1). Since many of the processes involved in protein synthesis are conserved, 

factors that catalyze them are also expected to be conserved. We have 

demonstrated that the RF3 coding gene was found in only 60% of the genomes 

analyzed (Margus et al. 2007), leaving 40% of bacteria without it. RF3 is involved in 

the termination of translation. This “canonical” function was recently challenged by 

Zaher and Green (2011). They demonstrated that RF3 maintains a post-peptidyl-

transfer-quality-control mechanism, evaluating mistakes retrospectively after the 

peptide bond has formed (Zaher and Green 2011). One might argue that the 

difference between these two mechanisms is small. Indeed, translation is terminated 

almost by the same scheme, but there is a substantial difference in the state of the 

ribosome that induces RF3-dependent termination (see also the debate about 

trGTPase functions). 

 

3.3. Evolutionary and functional characterization of EFG paralogs 
We demonstrated that EFG paralogs form four subfamilies within the phylogenetic 

tree: EFG I, spdEFG1, spdEFG2 and EFG II (Margus et al. 2011). From an 

evolutionary perspective, it would be intriguing to ask at which evolutionary stage the 

EFG gene was duplicated. We proposed the hypothesis that the four EFG 

subfamilies are the result of ancient duplication (Margus et al. 2011). Our hypothesis 

is supported by three independent observations. First, spdEFGs appeared at 

approximately the same time as modern eukaryotic cells carrying mitochondria 

(Atkinson and Baldauf 2010). Based on phylogenetic tree of EFG and the wide 

distribution of the EFG II subfamily (second and third observations), the duplication 

event that gave rise to the EFG II subfamily occurred early in prokaryotic evolution 

(Margus et al. 2011). Relying on the ancient origin and distinct separation of the EFG 

subfamilies from one another, it is reasonable to assume that each of them has been 

on the stage of evolution long enough to acquire its specialized function.  

What are these subfamily-specific functions and how have they evolved? There are 

many models describing gene fate after duplication, which can be reduced to a few 
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“final states” (insofar as this term makes sense in the context of evolution) (Innan and 

Kondrashov 2010). These “final states” or possibilities are: (a) where the function of 

the original is retained and a new copy has a novel function (as in 

neofunctionalization); (b) two functions of the original gene have split between 

paralogs (as in subfunctionalization); (c) both copies have the same function (e.g. 

positive dosage); (d) both copies have multiple functions (diversifying selection) 

(Innan and Kondrashov 2010). When dealing with ancient duplication(s), the first 

thing is to determine the “final state” to which a given duplication belongs. The 

easiest way to test the possibility of splitting function between paralogs is 

phylogenetic profiling. For a bifunctional protein, the original gene is replaced by two 

paralogs.  

Indeed, functional tests performed by Suematsu et al. (2010) have demonstrated that 

the functions of bacterial EFG I in Borrelia burgdorferi are split between EFG 

paralogs (in this work, spdEFG1and 2)(Suematsu et al. 2010). Cryo-EM mapping of 

the E. coli EFG complex with RRF predicts a total of five sets of contact points on 

EFG domains III and IV (Gao et al. 2007b). Atkinson and Baldauf (2010) examined 

spdEFGs in more detail from an evolutionary perspective, but comparison of 

spdEFG2-specific conserved positions with the proposed RRF contact points failed 

to show any correlation (Atkinson and Baldauf 2010). EFG and RRF work as a pair, 

and changing only one component in this pair can lead to a non-functional complex. 

For instance, Thermus thermophilus RRF is non-functional in E. coli (Fujiwara et al. 

1999), but it becomes functional upon co-expression of T. thermophilus EFG (Ito et 

al. 2002). We can argue that when a specific RRF works only with a specific set 

(compatible set) of EFGs, the RRF contact points on EFG are also RRF-specific, i.e. 

could differ between compatible sets of EFGs. If this is true, then conservation in 

contact points can be detected by analyzing one compatible set of EFGs. When 

three or more sets of EFGs are examined together, no conservation in contact points 

can be detected. Another possibility is that RRF contact points on EFG are not 

accurate because of limitations in the cryo-EM methodology.  

Splitting function between paralogs releases part of a gene from selection and 

enables new mutations to accumulate. These mutations can lead to the appearance 

of a new function – neofunctionalization in the shadow of subfunctionalization 

(Rastogi and Liberles 2005). It has been proposed that this type of evolutionary 

scenario is more frequent in small/closed populations where the probability of losing 

a gene copy is high and a gene copy will be preserved owing to subfunctionalization 

(Rastogi and Liberles 2005). In bacteria, populations are much larger than in 
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animals, but many bacteria live under strong pressure to minimize the genome and 

therefore minimize the amount of duplicated genetic material. Atkinson and Baldauf 

(2010) proposed that spdEFG evolution probably does not follow the simple 

subfunctionalization model (Atkinson and Baldauf 2010). Whether it follows 

neofunctionalization in the shadow of subfunctionalization requires further study. 

 

3.4.	  The	  EFG	  II	  subfamily	  
Among the trGTPases, the EFG II subfamily is peculiar in several ways. First, it 

consists of sequences that are highly divergent, much more than the EFG I 

subfamily. Second, phylogenetic analysis reveals relatively distantly related 

phyla/class-specific sub-subgroups, an unusual inner-structure of a subfamily. Third, 

EFG II is widely distributed; ~40% of bacteria contain EFG II as an additional EFG. 

The divergent nature of the EFG II subfamily encourages us to ask what role this 

protein really performs. What biochemical functions are common to EFG I and EFG 

II? Which protein regions/domains carry functions specific to the EFG II subfamily? Is 

the EFG II subfamily functionally homogeneous? We believe that the set of 12 EFG 

II-specific conserved positions is the key to answering these questions in future.  
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SUMMARY	  AND	  CONCLUSIONS	  
 

The following conclusions can be drawn from this thesis: 

1. The core set of trGTPases in bacteria comprises IF2, EF-Tu, EFG, and 

LepA(EF4). While IF2, EF-Tu and EFG are universally conserved in all 

domains of life, LepA is a bacteria-specific translation factor. 

2. RF3 does not belong to the core set of bacterial trGTPases and therefore the 

function assigned to it is probably not universal for the bacterial translation 

system. 

3. The mqsR/ygiT TA-system is widespread among bacterial genomes. 

4. A divergent set of EFG paralogs form four subfamilies within the phylogenetic 

tree: EFG I, spdEFG1, spdEFG2 and EFG II. 

5. The deep branches on the EFG phylogenetic tree, the wide distribution of 

EFG I and II and the monophyly of spdEFG1 with mtEFG1 all support the 

hypothesis that the EFG I and EFG II subfamilies resulted from an ancient 

duplication of a common ancestor.  

6. Twelve distinctive positions are characteristic of the EFG II subfamily. 

Functional interpretation based on comparison with the EFG I subfamily 

enables us to propose that: 

a. Positions 16Gly, 25Leu, 61Ser, 216Asp, 250Val, 264Leu are related 

to modifying the GTPase activity. 

b. Position 352Lys/Arg and increased charges in positions 469..472 are 

probably related to the interaction of the factor with the ribosome.  

7. The phylogenetic tree of EFG II has phyla/class-specific sub-subgroups. 

These sub-subgroups are characterized by: 

a. A sub-subgroup-specific G2 motif consensus, which differs from the 

trGTPase-specific RGITI consensus. 

b. Sub-subgroup-specific insertions and deletions. 
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SUMMARY	  IN	  ESTONIAN	   
 

Valgud on raku ehituskivideks ja eluks vajalike reaktsioonide katalüüsijateks. 

Bioinformaatika on meid varustanud võimsate järjestuste analüüsi vahenditega. 

Järjestuse sarnasuse alusel grupeeruvad valgud perekondadeks. Valguperekonna 

moodustavad homoloogsed järjestused ehk siis järjestused, mis pärinevad samast 

eellasjärjestusest. Tihti omavad samasse perekonda kuuluvad valgud ka sama või 

üksteisele lähedast funktsiooni. Meie teadmised valkude funktsioonidest pärinevad 

üksikutelt mudelorganismidelt. Tihti huvitab teadlasi kui universaalne või spetsiifiline 

on üks või teine kirjeldatud funktsioon. Kuidas ja millal evolutsiooni käigus tekib 

olemasolevast materjalist uute omadustega (uue funktsiooniga) valk läbi 

geeniduplikatsiooni? Kui tihti on sellised sündmused evolutsioonilises ajaskaalas 

aset leidud?  

Oma töös olen ma analüüsinud bakterite translatsioonilisi GTPaase (trGTPaas) ja 

mqsR/ygiT toksiin-antitoksiin (TA) süsteemi valke. Ühiseks nimetajaks mõlemale on 

valgusünteesi aparaat – mõlemad on seotud ribosoomiga ja sealtkaudu raku 

võimega sõltuvalt vajadusele toota valke.   

Küsimused, mida selles kontekstis on küsitud, saab laias laastus jagada kaheks: a) 

valguperekonna esindatusega seotud ja b) valguperekonna evolutsiooni ja 

funktsionaalse innovatsiooniga seotud. Translatsiooniliste GTPaaside puhul 

bakterites saame rääkida üheksast erinevast perekonnast – üheksast erinevast 

funktsioonide komplektist. Täisgenoomidele põhinev analüüs näitas, et üheksast 

trGTPaaside perekonnast on bakterites konserveerunud neli: IF2, EF-Tu, EFG ja 

LepA(EF4). Vaatamata sellele, et  RF3’e on omistatud klassikalise valgusünteesi 

mudeli valguses kanooniline roll translatsiooni lõpetamisel, puudus RF3 geen 

ligikaudu 40% analüüsitud bakteri genoomides. Samas aga ebaselge funktsiooniga 

LepA osutus bakterite spetsiifiliseks trGTPaasiks.  

Eelnev analüüs tõi ka välja EFG paraloogide laia esinemise – paljud  

bakterigenoomid sisaldasid 2-3 üksteisest küllaltki erinevat (divergeerunud) EFG 

geeni. Lähem analüüs tõi välja, et kogu varieeruvuse EFG perekonnas võib jagada 

neljaks alamperekonnaks: EFG I, spdEFG1, spdEFG2 ja EFG II. Eksperimentaalselt 

on hästi iseloomustatud EFG I. Uuritud on ka spdEFG’sid ja leitud, et esimene neist 

omab translokaasi aktiivsust translatsioonil ja teine osaleb ribosoomide 

retsükleerimisel. Laialt levinud EFG II alamperekond on aga halvasti uuritud. 
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Fülogeneetiline analüüs võimaldab püstitada hüpoteesi nelja EFG alamperekonna 

iidsest päritolust, st. nad on tekkinud ajalises skaalas enne (või samaaegselt) 

eukarüootse rakuvormi lahknemist arhedest ja bakteritest. Funktsionaalse 

innovatsiooni kandjaks EFG II valgus võib pidada eelkõige 12 positsiooni, mis on 

spetsiifiliselt konserveerunud just EFG II alamperekonnal. EFG II’e iseloomulikus 

kõrge divergentsuse taustal tõusevad need positsioonid esile GTPaasi domäänis, 

domäänis II ja neljandas domäänis. Konserveerunud muutused GTPaasi domäänis, 

millest osad on GTP’d siduvas G1 motiivis, võimaldavad teha järeldusi muutunud 

GTP sidumise ja hüdrolüüsi tingimuste kohta. Suurenenud laeng neljanda domääni 

lingu otsas, mis E. coli EFG’l siseneb A-saiti, võimaldab spekuleerida  muutuse üle 

translokatsiooni keskkonnas.  Konserveerunud muutused domään II piirkonnas 

viitavad muutunud interaktsioonile ribosoomi, domään I ja domään III vahel.   

EFG II alamperekonna fülogeneetiline ja järjestuste analüüs näitab selgelt 

hõimkonna/klassi spetsiifiliste alam-alamgruppide olemasolu. Need alam-alamgrupid 

erinevad teineteisest G2 motiivi konserveeruvuse ja insertsioonide/deletsioonide 

mustri alusel. See teine tase kirjeldab EFG II kui hõimkonna/klassi spetsiifilist faktorit.  

Mis on EFG II roll tegelikult ja kuidas ning millistes tingimustes ta komplementeerib 

EFG I, ootab  alles vastuseid. Antud töö on loonud raamistiku  tulevaste 

eksperimentide tarvis.   
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