

Recent de novo origin of human protein-coding genes

David G. Knowles and Aoife McLysaght

Genome Res. 2009 19: 1752-1759 originally published online September 2, 2009

Age Tats

Journal Club on 2 March 2010

Table 1 Molecular mechanisms for creating new gene structures				
Mechanism	Process	Examples	Comments	References
Exon shuffling: ectopic recombination of exons and domains from distinct genes		fucosyltransferase, jingwei, Tre2	~19% of exons in eukaryotic genes have been formed by exon shuffling	8,32,40,62, 65–68,105
Gene duplication: classic model of duplication with divergence	Duplication	CGβ, Cld , RNASE1B	Many duplicates have probably evolved new functions	9–11,29,35,39, 47,48,106
Retroposition: new gene duplicates are created in new genomic positions by reverse transcription or other processes	Franscription Reverse transcription and insertion	PGAM3, Pgk2, PMCHL1, PMCHL2, Sphinx	1% of human DNA is retroposed to new genomic locations	23,43,61,76, 80–82,107–110
Mobile element: a mobile element, also known as a transposable element (TE), sequence is directly recruited by host genes	New splice sites evolve within TE Other TE sequences degenerate	HLA-DR-1, human DAF, lungerkine mRNA, mNSC1 mRNA	Generates 4% of new exons in human protein-coding genes	16,78,111,112
Lateral gene transfer: a gene is laterally (horizontally) transmitted among organisms	Organiam A Organiam B Organiam B V Diverge	acytyineuraminate lysase, Escherichia coli mutU and mutS	Most often reported in prokaryotes and recently reported in plants	18–20,113
Gene fusion/fission: two adjacent genes fuse into a single gene, or a single gene splits into two genes	Fusion	Fatty-acid synthesis enzymes, <i>Kua-UEV, Sdic</i>	Involved in the formation of ~0.5% of prokaryotic genes	21,22,42, 114,115
De novo origination: a coding region originates from a previously non-coding genomic region		AFGPs, BC1RNA, BC200RNA	Rare for whole gene origination; might not be rare for partial gene origination	52-53,116,117

ARGP, antifreeze glycoprotein; CGβ, chorionic gonadotropin β polypeptide; Cid, centromere identifier; DAF, decay-accelerating factor; HLA-DR-1, major histocompatibility complex DR1; PGAM3, phosphoglycerate mutase 3; Pgk2, phosphoglycerate kinase 2; PMCHL, pro-melanin-concentrating hormone-like; RNASE, ribonuclease; Sdic, sperm-specific dynein intermediate chain; UEV, turnour susceptibility gene.

- Since 2006 several reports of de novo gene origins from *Drosophila* and yeast.
- ~12% of newly emerged genes in the *Drosophila melanogaster* subgroup may have arisen de novo from noncoding DNA, independently of transposable elements (Zhou *et al* (2008) *Genome Res*).
- 15 de novo genes identified in primate ancestor (Toll-Riera *et al* (2009) *Mol Biol Evol*).

- All-against-all BLASTP search between human, chimp and macaque proteins from Ensembl v46 (E-value < 1x10E-4).
- Unambiguous 1:1 orthologs with no other similarly strong hits. Lineage specific segmental duplications were excluded.
- Synteny blocks were constructed, anchored on these unambiguous orthologs, where the gap between anchors was no more than 10 genes in either genome. Local differences in gene order were permitted.
- Synteny blocks span 91% of the human and 85% of the chimp genomes.
- 94% of human protein-coding genes annotated by Ensembl are located within these blocks.

- BLAT and Ssearch sequence matches criteria:
 - translated sequence had ≥90% identity with the human protein in each of the exons;
 - no in-frame stop codons in the first half of the alignment;
 - any inferred introns were at least 18 nt long

CLLU1 C22orf45 DNAH10OS

- In chimp and macaque no potential ORF from the same start codon or in the same reading frame aligning to at least half of the human protein.
- BLASTP search against all of GenBank absence of paralogs or orthologs of these genes in any sequenced genome.

- Length 121-163 amino acids
- No introns in coding sequence
- Introns in UTRs
- No complex protein domains annotated
- Overlapping other genes on the opposite strand

Gene name	Ensembl ID	Length (codons)	Longest chimp ORF ^a	Expression support and tissue ^b	Primate shared disablers ^c	Other major sequence differences	Presence of enabler in other human complete genome sequences ^d	HapMap SNPs
CLLU1	ENSG00000205056	121	42	EST/cDNA: Blood (AJ845165, AJ845166); UniGene: Blood, embryonic tissue, eye, lymph, lymph node, muscle, pharynx, tonsil (Hs.339918)	1-bp indel ^e	Macaque: 4- and 1-bp indels	Sequence available and enabler conserved in all	1 syn.; 1 nonsyn.
C22orf45	ENSG00000178803	159	87 (25 amino acids align with human sequence)	EST/cDNA: Kidney, other (AX747284, AK091970, DA635985); ArrayExpress: Sperm, lung (E-GEOD-6872, E-GEOD-3020)	Premature stop codon	Chimp: 1-bp indel; Macaque: lacks ATG start codon; 4-bp indel	Reverse strand is available and conserved in Venter	1 nonsyn.
DNAH10OS	ENSG00000204626	163	90 (75 amino acids align with human sequence)	EST/cDNA: Hippocampus (AK127211); UniGene: Blood, embryonic tissue, eye, lymph, lymph node, muscle, pharynx, tonsil (Hs.339918)	10-bp indel	Chimp: 2- and 1-bp indels; Macaque: lacks ATG start codon; 13-, 8-, 1-, and 1-bp indels	Reverse strand is available and conserved in Venter, Watson and HuAA	1 syn.; 1 nonsyn.

Table 1. Novel human protein-coding genes and supporting evidence.

^aLength in codons of longest in-frame (alignable) ORF starting from any ATG in the region. ^bType of data/database is listed followed by tissue information with database identifiers in parentheses. Underlined accession numbers are full-length, spliced cDNA. ^cShared disablers are sequence differences shared by chimp, gorilla, orangutan, gibbon, and macaque that eliminate the capacity to produce a protein similar to the human protein. ^dIndependently sequenced whole genomes: Venter, Watson, HuAA, HuBB, HuCC, HuDD, and HuFF. All data are listed where available.

^eNot shared with orangutan.

Table 2.	Peptide	support 1	for genes
----------	---------	-----------	-----------

Gene name	Codon position of shared disabler	Peptide match	Peptide database references ^a	Location in protein seq	BLASTP hits ^b	TBLASTN hits ^c
CLLU1	41	HIIYSTFLSK	PeptideAtlas: PAp00140670	101	Self (0.41;10)	_
C22orf45	115	PCSNGGPAAAGEGR	PRIDE: 69; 73; 74; 75; 76; 8653: 8667	102	Self (9e-04; 14)	—
		WQGCTRPALLAPSLATLK	PRIDE: 8668; 8672	137	Self (2e-08; 18)	Self (0.069)
DNAH10OS	76-79	NPHSWGIKAHGLR	PRIDE: 8670a	75	d	Self (8.8)
		LERCMVPESEWAPWQPQLPCEPK	PRIDE: 8670b	94	d	Self (3e-05)

^aDatabase name and experiment numbers or identifiers. ^bBLASTP search (with *E*-values < 10) against the GenBank nonredundant protein database (*E*-value and number of identities of the match are shown in parentheses). ^cTBLASTN search against the human genome (*E*-value is shown in parentheses). ^dNot in NCBI nonredundant database.

C22orf45

в	Start
Human Chimpanzee Macaque	CCAGGACATGAGGGATGGAGCAGGACTGGCAACCTGGAGAGGAAGTCACTCCTC CCAGGACATGAGGGATGGAGCAGGACTGGCAACCTGGAGAGGAAGTCACTCCTC TCAGGACATGAGGGACGGAGCAGGATTGGCAACCTGGAGAGAAAGTCAGTCCTC
Human Chimpanzee	GTCCTGAGCCCTGTTCAAAGGGCCAGGCTCCCCTC - TACCCCATTGTCCATGTGACAGAG
Macaque	GTCCTGAGCCCTGTTCAAAGGGTCAGGCTCCCCTG-TACCCCACTGTCCATGTGACGGA
Human	CTCAAACACACACAGACCCCAACTTTCCCTCCAACTCCAATGCTGTCGGCACCTCAAGTGG
Macaque	CTCAAACAGACCCCAACTTTCCCTCCAACTCCAATGCTGTCAGCACCTCAAGTGGG
Human Chimpanzee Macaque	TGG AAC AGG A T TGGC AC GG G C TGC AGC C A T ACC TGG G AC TGG AGG T TC TCC TGC ACC C A TGG AAC AGG A T TGGC AC GG G C TGC AGC C A T ACC TGG G AC TGG AGG T TC TCC TGC ACC C A TGG AAC AGG A T TGGC AC AGG C TGC AGC C A T ACC TGG G AC TGG AGG T TC TCC TGC ACC C A
Human Chimpanzee Macague	CAGGCCCTTTTGCCCCTACTAGGAGCCTGGGAATGGAGCATTGACACAGAAGCAGGAGG CAGGCCCTTTTGCCCCTACTAGGAGCCTGGGAATGGAGCAT <mark>TGA</mark> CACAGAAGCAGGAGG CAGGCCCTTTTGCCGTCTACTAGGAGGCTTGGAATGGAGCATTGACACAGAAGCAGGAGG
Human Chimpanzee Macaque	PCSNGGPAAAAAG GGAAGGAGAGAGAGCAGAG-CCAGAAACCCTGCAGCAACGGAGGGCCTGCAGCAGCTGGAG GGAAGGAGAGAGCAGAGGCCAGAAACCCTGCAGAAACGGAGGGCCTGCAGCAGCTGGAG GGAAGGAGAGAGAGCAGAGACCAGAGACCCTGCAAAAATGGAGGGCCTGCAGCAGCTGGAG
Human Chimpanzee Macaque	G LR GGGCCGAGTCCTCCCAAGCCCCTGCTTTCCATGGAGCACTTGCCAGGCAGCCATTCACAA GGGCTGAGTCCTCCCAAGCCCCTGCTTTCCATGGGGCACTTGCCAGGCAGCCATTCACAA GGGCTGAGTCCTCCCAAGCCCCTGCTTTCCATGGGGCACTTGCCAGGCAGCCATTCACAA
Human Chimpanzee Macaque	W Q G C T B P A L L A P S L A T AGTGTGTCGTTGGCAGGGATGCACCAGACCAGCTCTCCTGGCACCATCCTGGCCACAC AGTGTGTTGTTGGCAGGGATGCACCAGACCAG
Human Chimpanzee Macaque	K CAAGGAACACAGTTATCCC <mark>TGA</mark> TGCTCTTGGC CAAGGAACACAGTTATCCCTGATGCTCTTGGC CAAGGAACACAGTTATCCCTGATGTTCCTGGC

A

DNAH100S

Human CTGGATACAACTGGAGC ATGCACAGCCTGCCACGGAGTGGC Chimpanzee CTGGATACAACTGGAAC ATGCACAGCCTGCCACGGAGTGGC Macaque CTGGACACAACCGGAGC ATCCACAGCCTGCCA	TCTATCAGGCGCACA TCTATCAGGCGCACA TCAGGCGCACA
Human ACAGCGACACACAGGCCACTGGCTGGCCTCCTCCCCAGCGCATT	GGGGACAGCCCAGGC
Macaque AGCGACACACACACAGCCACTGGTTGGCCTCCTCCCCAGCGCCCT	GGGGACAGCCCAGGC
Human CTTCTCCAGCATTTCTGTCCTGCCCACCTTCCCTCTGTGGAGGA	GCAGCCCAGACAGGA
Chimpanzee CTTCTCCAGCATTTCTGTCCTGCCCACCTTCCCTCTGTGGAGGA Macaque CTTCTCCAGCGCTTCTGTCCTGCCCACCTTCCCTCTGTGGAGGA	GC AGCCC AG AC AGG A ACGGC TC AG AC AGG A
Human ACCCTGTGGCCCTGCCCCATGGCCCAGAGAAATGGGTGTGGGGGC	GGTGGCCTCTCCCCC
Chimpanzee - CCCTGTGGCCCTCGCC - ATGGCCCAGAGAAATGGGTGTGGGGGC	GGTGGCCTCTCCCCC
Macaque ACCCCGTGGCCCTCCCCCAGGGCCCAGAGAAGTGGGTGCGGGGC	GGTGGCCTCTCCCCC
Human GGAATCCTCATTCCTGGGGCATCAAGGCCCACGGACTTAGACCA	CCCTGGGCCCCCAGG
Chimpanzee GGAAT GAGGCATCAAGGCCCACGGACTTAGACCA	CCCTGGGCCCCCAGG
Macaque GGAATGAGGCATCAAGGTCGACGGACTTAGACCA	CCCTGGGCCCCCAGG
Human TAGAAAGATGCATGCTCCCAGAGTCAGAATGGGCACCATGGCAA	CCCCAGCTACCCTGT
Chimpanzee TAGAAAGATGCATGGTCCCAGAGTCAGAATGGGCACCATGGCAA	CCCCAGCTACCCTGT
Macaque TAGGA AGA TGC A TGGC CCC AG AG TC AG A A TGGGC ACC A TGGC A A	CCCCGGCTACCCTGG
Human AGCCGAAGTGGCTGGGGAGCAGGAAGTCGAAGCCTCACAGAGAA	AGTEGTETECEGEGEA
Chimpanzee AGCCGAAGTGGCTGGGGAGCAGGAAGTCGAAGCCTCACAGAGAA	AGTGGTCTCCGGGGA
Macaque AGCCGAAGTGGCTGGGGAGCAGGAAGTAGAAGCGTCACAGAGAA	AGCGGCCCCCGGGGA
Human GAGGACCCAGCAGATGTGCAAAGAGAGGAACACACT	CCTGTGGCCCCAGAG
Chimpanzee GAGGACCCAGCAGACGTGCAAAGAGAGGAACACACT	CCTGCGGCCCCAGAG.
Macaque GAGGACCCAGCAGACATAGAAAGGGGAGAAGACAGGAGCACACG	CCTGTGGCCCCAGAG.
Human GAGTGGTGGCCCGGACACCTGCCACCTCCCCTGCCACTGAG	ACCTGGAGA
Chimpanzee GAGTGGTGGCCCGGACACCTGCCACCTCCCCTGCCACTGAG	ACCTGGAGA
Macaque GAGTGGCAGCCCAGACACC - GCCAGCTCCCC - GCCACTGA G	AGCCGCAGA

C		*
0	Human	CCCCAGGAATCCTCATTCCTCGGGGCATCAA
	Chimpanzee	CCCCAGGAAT GAGGCATCAA
	_ Gorilla	CCCCAGGAAT GAGGCATCAA gnl ti 2037239993_Gorilla
	- Orangutan	CCCCAGGAATGAGGCAGCAA gnl[ti]1012096583_Pongo
	Gibbon	CCCCAGGAAT GAGGCATCAA gnl[ti]1880790723_Nomascus
	Macague	CCCCAGGAATGAGGCATCAA

А

Additional proof

- Resequencing three orthologous regions DNA in one chimp individual verified the critical sequence differences.
- Each of the disablers shared by chimp and macaque is also shared with the gorilla and gibbon; two are also shared with orangutan.

- For novel chimp genes no reliable cases were identified.
- Estimation: the frequency of novel protein-coding genes in human genome is about 0.075% → ~18 genes

- Knowles and McLysaght (2009) Recent de novo origin of human protein-coding genes. *Genome Res.*, 19, 1752-1759
- Siepel (2009) Darwinian alchemy: Human genes from noncoding DNA. *Genome Res.*, **19**, 1693-1695
- Long et al (2003) The origin of new genes: Glimpses from the young and old. *Nature Reviews*, **4**, 865-875