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Abstract

Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that
there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on
discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting
stringent type-| error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict
phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We
apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock
mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide
marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the
phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when
half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs
being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of
phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be
applied in human medicine, forensics, or artificial selection programs.
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INTRODUCTION

Genome wide association studies

Multi staged, focused on gene discovery, set
stringent error rates, one SNP at a time

Alternative - prediction of phenotypes using all
genome-wide SNP information simultaneously

Relationship between genome-wide marker data
and phenotypes needs to be modeled




METHODS

Publicly available data on heterogenous stock mice
2296 animals from 85 families
11730 SNPs
Linear mixed models
Additive genetic model

T
Additive and dominance genetic model
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ADDITIVE GENETIC MODEL

ng
y=uly +Zu+ ZA,-oc,-+e (1)

i=1

where y is a vector of length JV,, with single trait phenotypes for all
animals corrected for fixed environmental effects (N, = no.
observations in Table 1), ng is the number of SNPs associated
with the QTL involved in phenotypic expression, u is the overall
mean, ly 1s a vector of N, ones, u 1s a vector of N random
polygenic effects for NV animals (N'=2296), «; 1s the fixed effect of
the i SNP and ¢ is a vector of residuals. £ is an incidence matrix
for the random polygenic effects relating observations to individual
animals, with dimensions JV, X N. Note that N>N, as some animals
have a polygenic effect estimated based upon phenotypic
information from relatives without having a phenotypic observa-
tion themselves. A; is a column vector of length N, having
coefficients 0, 1 or 2 representing indicator variables of the
genotype for each animal at the i"* SNP. The variance structure of

phenotypic observations is written as V' =2 (A 02)Z' + I0?%, where
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A 1s the numerator relationship matrix, / is a identity matrix, o;, is

polygenic additive genetic variance and ¢2 is error variance.




ADDITIVE AND DOMINANCE
GENETIC MODEL

y=uly +Zu+ zq: (Ajo; +Ao;) +e (2)
i=1

where ¢, is the dominance effect of the i SNP and 4, is a column
vector having coefficients that are 1 for a heterozygous genotype
and 0 for a homozygous genotype at the i"" SNP.

Dominance effects due to SNPs are added




ESTIMATION OF EFFECTS
AND MODEL SELECTION

Reversible jump MCMC to simultaneously consider the
whole genome

Unknown phenotypes are predicted based on parameter
estimates and averaged over all MCMC rounds.

The probability of the sampled parameters given observed
phenotypes is

pr(y|ng,p,®)pr(ng,p,0)
> pr(y|ng,p,®)pr(ng,p,®)

where pr(y|ng, p, ©) is the likelihood of the observed phenotypes
given the sampled variables, pring, p, ©) is the joint prior
probability of the variables, and the denominator is summed over

the probabilities of all possible parameter states. If the parameter
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pr(ng,p,®|y)= (3)




ESTIMATION OF EFFECTS
AND MODEL SELECTION

Fixed polygenic heritability used in models
0.72, 0.99, 0.55 for coat colour, CD8%, MCH
Best linear unbiased prediction
SNP modeling
saved computer time (10,000 MCMC iterations)

Single SNP analyses




PREDICTING UNOBSERVED
PHENOTYPES

Best linear unbiased prediction of polygenic values

pedigree and phenotype values only, or additional
genomic information (model A), or both (model AD)

half of phenotypic data for estimation, remaining for
prediction and validation

Table 1. The number of observations (and SD?) in the entire data set and the test and prediction sets.

Trait Total no. observations Strategy No. observations

Estimation set Prediction set

coat colour 1940 intra-family 975 (12) 965 (12)
inter-family 993 (237) 947 (237)

%CD8 1410 intra-family 714 (14) 696 (14)
inter-family 719 (177) 691 (177)

MCH 1580 intra-family 797 (11) 783 (11)
inter-family 800 (200) 780 (200)

?Standard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t001




RESULTS

Use of genomic information substantially increases the
accuracy of predicting unobserved phenotypes

prediction accuracies are generally better for AD model

Table 2. Correlation (SD?) of actual and predicted phenotypes and their standard deviations®.

Intra-family wise Inter-family wise

Coat colour %CD8 MCH Coat colour %CD8

BLUP (Ignoring genotypic data) 0.54 (0.02) 0.64 (0.02) 0.41 (0.01) 0.00 0.00 0.00

Fitting genotypic data and pedigree

Model A

0.72 (0.02)

Model AD 0.89 (0.03)
Fitting genotypic data and ignoring pedigree

Model A 0.65 (0.02)

Model AD 0.85 (0.04)

0.71 (0.02)
0.73 (0.02)

0.65 (0.02)
0.69 (0.02)

0.52 (0.02)
0.55 (0.02)

0.46 (0.04)
0.50 (0.04)

0.58 (0.06)
0.87 (0.05)

0.54 (0.06)
0.81 (0.08)

0.50 (0.05)
0.58 (0.05)

0.51 (0.05)
0.56 (0.06)

0.35 (0.07)
0.36 (0.09)

0.33 (0.06)
0.33 (0.09)

aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t002




RESULTS

Prediction of phenotypes from genetic data
not accurate for traits with low heritability

large proportion of genetic variation detected

Table 3. Correlation (SD?) between predicted and inferred additive genetic values.

Intra-family wise Inter-family wise

Coat colour %CD8 MCH Coat colour %CD8 MCH

BLUP 0.63 (0.03) 0.64 (0.02) 0.55 (0.02) 0.00 0.00 0.00
Model A 0.84 (0.02) 0.71 (0.02) 0.71 (0.03) 0.68 (0.07) 0.50 (0.05) 0.47 (0.09)
Model AD 1.05 (0.04) 0.73 (0.02) 0.75 (0.03) 1.02 (0.06) 0.59 (0.05) 0.48 (0.12)

aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t003




RESULTS

Accuracy of prediction is higher when considering whole

genome information instead of using one chromosome at a
time

Whole-genome approach and RIMCMC provides posterior

density of each SNP being associated with the phenotype,
so the positions of trait loci can be estimated
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RESULTS

Converge of parameter estimates

Accuracy rapidly increases in early rounds, stable after
10,000 iterations

-

2000 4000 6000 8000 10000

number of iterations




DISCUSSION

Study proposed a method to simultaneously analyse
whole genome SNP data for association with
phenotypes, applied this method to three traits
measured in a heterogeneous mouse stock and
successfully predicted unobserved phenotypes.

The prediction of unobserved phenotypes for
complex traits from genome-wide marker data is
feasible and can be accurate

Applications of the method are plentiful
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