The genome-wide determinants of human and chimpanzee microsatellite evolution

Kelkar YD, Tyekucheva S, Chiaromonte F and Makova KD.
Genome Research, 2008 18:30-38

Triinu Kõressaar
Seminar in Bioinformatics

TARTU 2008
What are microsatellites?

- known also as simple/short tandem repeats
- recurring tandemly
- short (motif size 1-6bp)
- undergo rapid length changes - ins/del of repeat units
- mutation rates - $10^{-4}-10^{-2}$ per locus per generation in humans
Why are microsatellites important?

The instability of microsatellites is the cause of:
- genesis of cancer
- neurological disorders

Markers for forensic and conservation genetics, genome mapping, population genetic studies etc
Replication slippage. After the replication of a repeat tract has been initiated, the two strands might dissociate. If the nascent strand then realigns out of register, continued replication will lead to a different length from the template strand. If misalignment introduced a loop on the nascent strand, the end result would be an increase in repeat length. A loop that is formed in the template strand leads to a decrease in repeat length.
Mutation rate of microsatellites depends on (1/2):

- the number of repeated units
- length of microsatellite
- length of repeat unit
- the composition on repeated motif
- regionally varying genomic features
 (e.g. local substitution/recombination rates,
 localization respect to Alu repeats, GC content)
Mutation rate of microsatellites depends on (2/2):

- transcription
- replication
- localization of microsatellite in sex or autosomes
 \((Y > \text{autosomes} > X)\)

These features have not been considered together or on a genome-wide scale
Further...

1. Identification of orthologous microsatellites
2. Effect of:
 - repeat number, motif size, motif length
 - motif composition
 - transcription
 - location in isochores
 - location in interspersed repeats
 - chromosome type

on mutuability
3. Genomic features and microsatellite mutuability
Identification of orthologous microsatellites (1/2)

Motif size 1-4 bp
Uninterrupted microsatellites
For microsatellite identification Sputnik was used:
 minimum score of 4
 mismatch penalty -1000
For orthologous microsatellites BLASTZ alignments were used.
Identification of orthologous microsatellites (2/2)

Filtration:

no orthologous microsatellites in one of the species
low quality sequences in chimpanzee
different repeated motifs at orthologous locations in human and chimpanzee
neighboring microsatellites within 10 bp
<9 repeats for mononucleotide repeats
<4 repeats for di-tri-tetranucleotide repeats

2,107,841 orthologous microsatellite pairs (744,769, 952,382, 97,098, 76,074
mono-, di-, tri- and tetranucleotide intergenic and intronic autosomal microsatellites were used)
Calculating mutability (for groups containing at least 30 microsatellites)

\[
\text{Mutability} = \frac{\sum_{i=1}^{n_h} h_i (H_i - C_i)^2 + \sum_{i=1}^{n_c} c_i (C_i - H_i)^2}{\sum_{i=1}^{n_h} h_i + \sum_{i=1}^{n_c} c_i}
\]

\(H_{i(c)}\) human (chimpanzee) repeat number for each of \(n_{h(c)}\) orthologous microsatellite pairs sorted according repeat number in human (chimpanzee)

\(h_i, c_i\) - correction parameters (=2 if correction for reverse mutation is required when human (chimpanzee) genome is considered ancestral, e.g. human is ancestral, \(C_i > H_i\) and \((H_i - (C_i - H_i)) < \text{threshold}\))
Effects of repeat number and motif size on mutability

* The bands around the curves indicate the 2.5th and 97.5th percentiles of empirical distributions obtained through a resampling procedure.

Effects of motif size and length on mutability
Effect of motif composition on mutability
Effect of motif composition on mutability
Effect of motif composition on mutability

tetranucleotides

\[\log_{10}(\text{mutability}) \]

Repeat number
Effects of transcriptions, location in different isochores, and interspersed repeats on mutuality

Mutability does not differ significantly between:
- untranscribed and transcribed (intronic) microsatellites
- different isochores
The male-to-female mutation rate ratio is equal 2.37, 2.03 and 2.31 for the Y/A, X/A and Y/X comparisons, respectively.
Regression analyses with R: best subset model-building technique

Quantitative predictors - repeat number, motif size, repeat length
Categorical predictor - chromosome type

<table>
<thead>
<tr>
<th>Feature</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC content</td>
<td>fraction of bases per window</td>
</tr>
<tr>
<td>Exon content</td>
<td>fraction of bases per window</td>
</tr>
<tr>
<td>Alu content</td>
<td>fraction of bases per window</td>
</tr>
<tr>
<td>L1 content</td>
<td>fraction of bases per window</td>
</tr>
<tr>
<td>Distance from telomere</td>
<td>distance of central base of window from nearest telomere</td>
</tr>
<tr>
<td>Human-macaque divergence</td>
<td>estimated using REV in ancestral repeats</td>
</tr>
<tr>
<td>Computational recombination rate</td>
<td>from Myers et al. (2005)</td>
</tr>
<tr>
<td>X-chromosome / autosome indicator</td>
<td>“0” for autosomes, “1” for X chromosome</td>
</tr>
</tbody>
</table>

Calculated in 5Mb and 1Mb windows based on human annotations
For each predictor

Relative Contribution to Variability Explained

was calculated

\[RCVE = \frac{R_{full}^2 - R_{reduced}^2}{R_{full}^2} \]
Table 1. Multiple regression models for log mutability (per locus per generation) of genomewide and local microsatellite groups.

<table>
<thead>
<tr>
<th>Regressions</th>
<th>Genome-wide regressions</th>
<th>Regressions for local groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Mono-nucleotides</td>
</tr>
<tr>
<td>Microsatellites (window)/Feature</td>
<td></td>
<td>0.03 (-12)</td>
</tr>
<tr>
<td>Repeat number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>0.07 (-15)</td>
<td></td>
</tr>
<tr>
<td>Motif size</td>
<td>0.04 (-13)</td>
<td></td>
</tr>
<tr>
<td>Chromosome type⁵</td>
<td><0.01 (-4)</td>
<td>0.02 (-9)</td>
</tr>
<tr>
<td>Motif composition⁶</td>
<td>-</td>
<td>0.01 (-8)</td>
</tr>
<tr>
<td>R² (predictors above)</td>
<td>0.908</td>
<td>0.973</td>
</tr>
<tr>
<td>GC content</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Substitution rate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distance from telomere</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recombination rate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alu content</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L1 content</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

For each predictor, the relative contribution to the variability explained (RCVE; see Methods) is indicated and the significance ($\log_{10} P$-value with Bonferroni correction for multiple tests applied) is given in parentheses. For significant quantitative predictors, red indicates a positive effect on mutability; blue, a negative effect. For each model, the multiple R^2 is indicated (adjusted R^2's were almost identical to multiple R^2).

⁵Only (A)n microsatellites were used.

⁶Repeat number was used in conjunction with its square root, the lower between the two \(\log_{10}\) P-values is provided.

Categorical variable, the lower \(\log_{10}\) P-value is provided.

n.s. = not significant
Conclusions

Repeat number, motif size and repeat length determine most of the interlocus variation in microsatellite mutability (>90%)

Replication slippage is the predominant mechanism of mutagenesis

The effect of local genomic features on microsatellite mutability have to be re-evaluated at smaller scales

The regression models can be used to answer the questions:
- which disease-causing microsatellites are likely to have high rates of de novo mutations?
- which microsatellites are the most suitable for forensic applications?
- which are the polymorphic microsatellites suitable for population and conservation genetic studies?