Evolution and multilevel optimization of the genetic code

T. Bollenbach, K. Vetsigian, R. Kishony, Genome Research March 2007

or

What information is hidden in the DNA?

Marion Reuter October 30th, 2007 Journal Club

Content

- History of DNA: Watson, Crick & Co
- The Code and it's decryption
- Evolution of the genetic code
- Optimization: frameshift and double coding
- A current work: Itzkovitz, Alon
- Conclusions

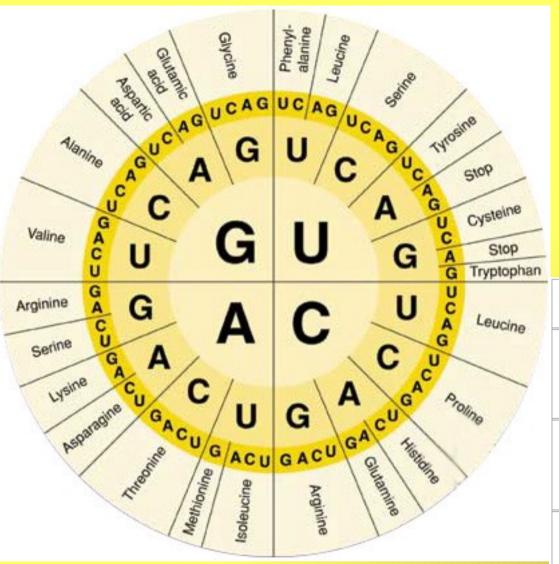
When all began

- 1868 first nucleid acids found (name because found in nucleus; F. Miescher)
- 1919 compounds found (sugar, base and phosphate;
 P. Levene)
- 1937 hints for repetitive structure of DNA (W. Astbury)
- 1952 proposal that order of nucleotides determines the order of amino acids (L.A. Dounce)
- 1953 : discovery of the DNA structure of the double helix (Watson & Crick)

The encryption race started

- 1954 Gamow suggested a "key to lock" mechanism for binding the aa at special "holes"
- quartet of nucleotides of nucleotides code for each aa but two are complementary, so a triplet codes for each aa
 - 20 different aa
- codons are overlapping: 2nd position of the first codon is the 1st position of the second codon, ruled out in 1957 (Brenner)

Theories at 1957


(Crick proposed "code without commas")

							\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{A}	\boldsymbol{B}	D	C
	В	c	A	+								
Overlapping code		\boldsymbol{C}	A	\boldsymbol{C}								
Overlapping code			\boldsymbol{A}	\boldsymbol{C}	D							
				\boldsymbol{c}	D	D						
	В	C	A									
Partial overlapping code			A	\boldsymbol{C}	D							
I artial overlapping code			-		D	\boldsymbol{D}	A					
							A	B	A			
	В	C	A									
Nonoverlapping code	70000	0.0755	0.50	\boldsymbol{C}	D	D						
1200 120 6							A	\boldsymbol{B}	A			
										B	\boldsymbol{D}	\boldsymbol{C}

Fig. 1.—The letters A, B, C, and D stand for the four bases of the four common nucleotides. The top row of letters represents an imaginary sequence of them. In the codes illustrated here each set of three letters represents an amino acid. The diagram shows how the first four amino acids of a sequence are coded in the three classes of codes.

Lots of guessing until...

- comma free? which reading frame to choose? one is ok, the out-of-frame sequences are nonsense?
- several theories like sixtuplet, two letter or the one letter code + additional informtion from outside the DNA
- 1961 Matthaei found the first Codon (UUU to phenylalanine)
- 1966 all 64 codons were found

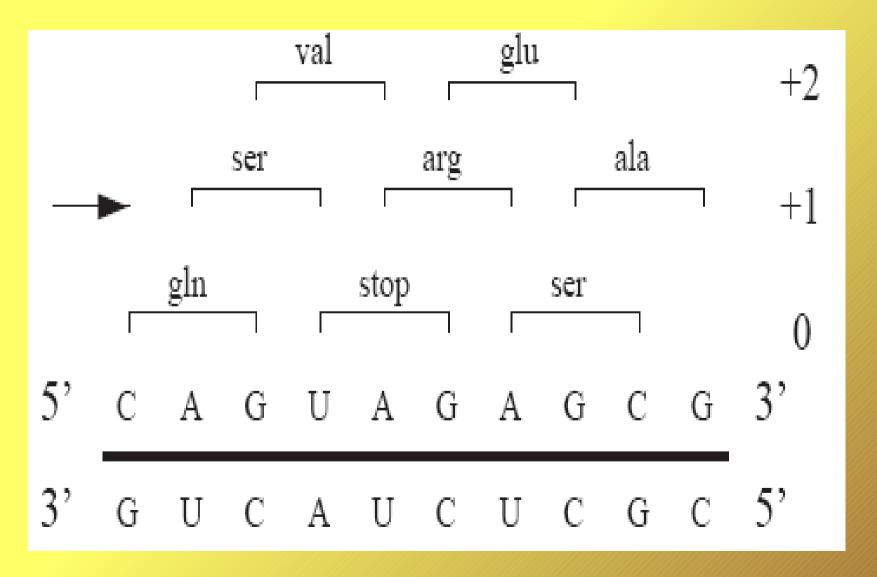
similar codons
 assigned to aa's with
 similar chemical
 properties (Woese)

 family boxes and wobble rules (Crick) for system of same aa to several similar codons

	T	С	A	G
Т	TTT Phe (F)	TCT Ser (S)	TAT Tyr (Y)	TGT Cys (C)
	TTC "	TCC "	TAC	TGC
	TTA Leu (L)	TCA "	TAA Ter	TGA Ter
	TTG "	TCG "	TAG Ter	TGG Trp (W)
С	CTT Leu (L)	CCT Pro (P)	CAT His (H)	CGT Arg (R)
	CTC "	CCC "	CAC "	CGC "
	CTA "	CCA "	CAA Gln (Q)	CGA "
	CTG "	CCG "	CAG "	CGG "
A	ATT Ile (I)	ACT Thr (T)	AAT Asn (N)	AGT Ser (S)
	ATC "	ACC "	AAC "	AGC "
	ATA "	ACA "	AAA Lys (K)	AGA Arg (R)
	ATG Met (M)	ACG "	AAG "	AGG "
G	GTT Val (V)	GCT Ala (A)	GAT Asp (D)	GGT Gly (G)
	GTC "	GCC "	GAC "	GGC "
	GTA "	GCA "	GAA Glu (E)	GGA "
	GTG "	GCG "	GAG "	GGG "

Journal Club, M.Reuter, October 2007

Evolutionary optimization


- Minimize the impact of translational errors
- Minimize the impact of mutations
- To deal with the increasing number of aa during evolutionary time
- etc.

variant codes, but all with minor differences (why? proposal of extensive horizontal gene transfer during early evolution, would lead to optimality and universality)

Frameshift mutation

- leads to <u>nonfunctional proteins</u>, <u>waste of</u> ressources and could be toxic
- minimizing with termination of elongation as quickly as possible after frameshift
- in many organisms bioinformaticians found tendencies to stop codons if read off-frame
- not always because then every point mutation would result to nonsense codons
- Antagonistic goals: low price with low error rate Journal Club, M.Reuter, October 2007

Frame shift

Itzkovitz and Alon (Genome Research March2007):

The genetic code is nearly optimal for allowing additional information within protein-coding sequences

- First new property of optimization
 - compared genetic code with others that are equally optimized (with respect to mistranslation or mutation)
 - assume the usage frequency of the aa is fixed while codon assignments vary for other models
 - Result: actual genetic code ist far better in minimizing the aa chain length after frameshift error

	U	C	A	G		U	C	A	Ğ
	Phe	Ser	Tyr	Cys	U	Phe	Ser	Tyr	Cys
	Phe	Ser	Tyr	Cys		Phe	Ser	Tyr	Cys
1	Leu	Ser	STOP	STOP	A U	Leu	Ser	STOP	STOP
	Leu	Ser	STOP	Trp	G	Leu	Ser	STOP	Trp
-1	Leu	Pro	His	Arg	U	Leu	Pro	His	Arg
	Leu	Pro	His	Arg		Leu	Pro	His	Arg
1	Leu	Pro	Gln	Arg	A C	Leu	Pro	Gln	Arg
- 1	Leu	Pro	Gln	Arg	G	Leu	Pro	Gln	Arg
-	flex	Thr	Asn	Ser	Tu T	Val	Ala	Asp	Gly
	lle	Thr	Asn	Ser	C .	Val	Ala	Asp	Gly
	tio	Thr	Lys	Arg	A A	Val	Ala	Glu	Gly
-	Met	Thr	Lys	Arg	G //	→ Val	Ala	Glu	Gly
	Val	Ala	Asp	Gly	Tu [[[tie	Tor	Asn	Ser
	Val	Ala	Asp	Gly	c / W	lle	Thr	Asn	Ser
	Val	Ala	Glu	Gly	A G	lle	Thr	Lys	Arg
- 1							Thr	Lys	Arg
A		Ala	Glu	Gly]a r [B	Met			
_ A	- 4	Ala	Glu]	Gly	7	West U	C	A	G
_ A		E	2		7				
Г	U	G Tyr	> \	G Cys	В	Ü	С	A	G
Г	U Phe	5	A Ser	G Cys Cys	В	U Phe	C Ser	A Tyr	G Cys
Г	U Phe Phe	C Tyr Tyr	A Ser Ser	G Cys	В	U Phe Phe	C Ser Ser	A Tyr Tyr	G Cys Cys
F	U Phe Phe Leu	C Tyr Tyr STOP	A Ser Ser Ser	G Cys Cys STOP	B U C A	U Phe Phe Leu	C Ser Ser Ser	A Tyr Tyr STOP	G Cys Cys Trp
, [U Phe Phe Leu Leu	C Tyr Tyr STOP	A Ser Ser Ser Ser	G Cys Cys STOP Trp	B U C A G U	U Phe Phe Leu Leu	C Ser Ser Ser Ser	A Tyr Tyr STOP STOP	G Cys Cys Trp STOP
	U Phe Phe Leu Leu	C Tyr Tyr STOP STOP	A Ser Ser Ser Ser Pro	G Cys Cys STOP Trp Arg	B U C A G	U Phe Phe Leu Leu	C Ser Ser Ser Ser	A Tyr Tyr STOP STOP His	G Cys Cys Trp STOP
	U Phe Phe Leu Leu Leu	C Tyr Tyr STOP STOP His His	A Ser Ser Ser Ser Pro	G Cys Cys STOP Trp Arg	BUCAGUC	U Phe Phe Leu Leu Leu	C Ser Ser Ser Ser Pro	A Tyr Tyr STOP STOP His	G Cys Cys Trp STOP Arg Arg
,	U Phe Phe Leu Leu Leu Leu	C Tyr Tyr STOP STOP His His Gin	A Ser Ser Ser Ser Pro Pro	G Cys Cys STOP Trp Arg Arg	B U C A G U C A	U Phe Phe Leu Leu Leu Leu	C Ser Ser Ser Pro Pro	A Tyr Tyr STOP STOP His His Gin	G Cys Cys Trp STOP Arg Arg
	U Phe Phe Leu Leu Leu Leu Leu	C Tyr Tyr STOP STOP His His Gin Gin	A Ser Ser Ser Pro Pro Pro Pro	G Cys Cys STOP Trp Arg Arg Arg	BUCAGUCAGUC	U Phe Phe Leu Leu Leu Leu Leu Leu Leu Leu	C Ser Ser Ser Pro Pro Pro	A Tyr Tyr STOP STOP His His Gin	G Cys Cys Trp STOP Arg Arg Arg
	U Phe Phe Leu Leu Leu Leu Leu Ile Ile	C Tyr Tyr STOP STOP His His Gin Gin Asn	A Ser Ser Ser Pro Pro Pro Pro Thr	G Cys Cys STOP Trp Arg Arg Arg	BUCAGUCAGU	U Phe Phe Leu Leu Leu Leu Leu Leu Leu	C Ser Ser Ser Pro Pro Pro Pro	A Tyr Tyr STOP STOP His His Gin Gin Asn	G Cys Cys Trp STOP Arg Arg Arg Arg
	U Phe Phe Leu Leu Leu Leu Leu Leu Ile	C Tyr Tyr STOP STOP His His Gin Gin Asn Asn Lys	A Ser Ser Ser Ser Pro Pro Pro Pro Thr	G Cys Cys STOP Trp Arg Arg Arg Arg Ser Ser	B UCAGUCAGUC	U Phe Phe Leu Leu Leu Leu Leu Leu Leu Leu	C Ser Ser Ser Pro Pro Pro Pro Pro Thr	A Tyr Tyr STOP STOP His His Gin Gin Asn Asn	G Cys Cys Trp STOP Arg Arg Arg Arg Arg
	U Phe Phe Leu Leu Leu Leu Leu Ile Ile	C Tyr Tyr STOP STOP His His Gin Gin Asn Asn	A Ser Ser Ser Pro Pro Pro Pro Thr	G Cys Cys STOP Trp Arg Arg Arg Ser Ser	B U C A G U C A G U C A	U Phe Phe Leu Leu Leu Leu Leu Leu Leu Mat	C Ser Ser Ser Pro Pro Pro Pro Thr	A Tyr Tyr STOP STOP His His Gin Gin Asn	G Cys Cys Trp STOP Arg Arg Arg Arg Ser Ser
	U Phe Phe Leu Leu Leu Leu Leu Ile Ile Ile Ile Met	C Tyr Tyr STOP STOP His His Gin Gin Asn Asn Lys Lys	A Ser Ser Ser Pro Pro Pro Pro Thr Thr	G Cys Cys STOP Trp Arg Arg Arg Arg Arg Ser Ser Arg	B UCAGUCAGUCAGUCAGUC	U Phe Phe Leu Leu Leu Leu Leu Leu Leu Leu Leu Le	C Ser Ser Ser Pro Pro Pro Pro Thr Thr	A Tyr Tyr STOP STOP His His Gin Gin Asn Lys Lys Asp	G Cys Cys Trp STOP Arg Arg Arg Arg Arg Arg Arg
, [U Phe Phe Leu Leu Leu Leu Leu Ile Ile Ile Ile Mei Val	C Tyr Tyr STOP STOP His His Gin Gin Asn Asn Lys Lys Asp	A Ser Ser Ser Pro Pro Pro Pro Thr Thr Thr	G Cys Cys STOP Trp Arg Arg Arg Arg Arg Arg Arg	B UCAGUCAGUCAG	U Phe Phe Lou Leu Leu Leu Leu Leu Leu Leu Leu Leu Le	C Ser Ser Ser Pro Pro Pro Pro Thr Thr	A Tyr Tyr STOP STOP His His Gin Gin Asn Asn Lys Lys	G Cys Cys Trp STOP Arg Arg Arg Arg Arg Arg Ser Ser Arg Arg

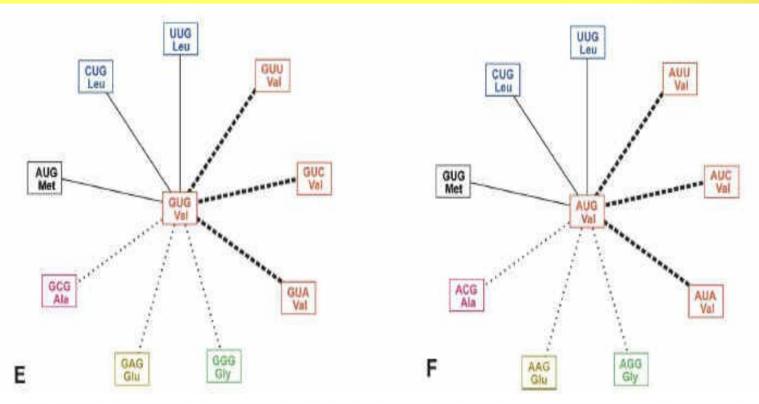


Figure 1. Alternative genetic codes. (A) The real code. (B) An alternative code obtained by an $A \leftrightarrow G$ permutation in the first position. (C) An alternative code obtained by an $A \leftrightarrow G$ permutation in the second position, and (D) $A \leftrightarrow G$ permutation in the third position. Stop codons are marked in red, start (Met) codons in green. Codons that are changed relative to the real code are in gray. There are $4! \times 4! \times 2 = 1152$ alternative codes obtained by independent permutations of the nucleotides in each of the three codon positions. (E, F) Structural equivalence of real and alternative genetic codes. For example, (E) the nine neighboring codons of the Valine codon marked with a red arrow in the real code (shown in A) are the same as (F) the nine neighboring codons of the Valine codon marked with a red arrow in the alternative code shown in B. Solid lines connect codons differing in the first letter, dotted lines connect codons differing in the second letter, and dashed lines connect codons differing in the third letter. Different amino acids are displayed in different colors. This equivalence applies to all codons.

Itzkovitz and Alon (2)

- Second new property/proposal
 - genetic code is highly optimal for encoding arbitrary additional information, i.e., information other than aa code
 - like RNA splicing signals
 - signals recognized by the translation apparatus (e.g. usally stop codons can in special combinations be translated as rare aa)
 - nucleosome positioning
 - RNA secondary structure
 - additional genes (common in viruses; double coding)

 Journal Club, M.Reuter, October 2007

Additional information as hidden messages

example from "Sherlock Holmes" (Conan Doyle 1893)

"The supply of game for London is going steadily up. Head keeper Hudson, we believe, has been now told to receive all orders for fly-paper and for preservation of your hen pheasant's life."

There is more information in the sentence than it seams. Read only every third word...

Additional information as hidden messages

- example from "Sherlock Holmes" (Conan Doyle 1893)
 - "The supply of game for London is going steadily up. Headkeeper Hudson, we believe, has been now told to receive all orders for fly-paper and for preservation of your hen pheasant's life."

Hidden message/additional information:

"The game is up. Hudson has told all. Fly for your life."

Conclusions

- The degeneracy of the genetic code optimizes a combination of several different functions simultaneously. Low cost with high quality.
- Looking deeper into the structure of the genetic code, the more possibilities seems to occur.

Thanks for your attention! Questions?

