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Stress concentration in a tranversely isotropic medium
near a hyperboloid notch in pure shear and bending

Stress  iga doktorandi “parim sdber”

concentration seal kus on, sinna tuleb juurde

tranverse - (of an automotive engine)

transversely , . ,
mounted with the crankshaft oriented sideways.

isotropic saun Saharas (iso = suur, tropic = kuum)
medium a person through whom the spirits of the dead
are alleged to be able to contact the living
hyperboloid  Insener Garini Hiiperboloid "0é on siin soe, ...
notch to score, as in a game
pure untainted with evil; innocent
shear to divide, apportion, or receive equally.

to force (an object, esp. a long or thin one)

bending
¢ from a straight form into a curved or angular one

Kokkuvotvalt: Uks suutu laheb Sahara korbes sumedas 00s (suitsu)sauna,

et vabaneda nadala jooksul kogunenud stressipunktidest nukkvolli vibutava ndia abiga.
Sauna aga koguneb rahvast juurde ning noia leiliviskamise ajel .. . o
tdmbavad kéik kiitiru selga ning naudivad (ihtlast leili. Ja seda koike Springeris?!
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Dynamic Remodeling of Individual
Nucleosomes Across a Eukaryotic Genome
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The eukaryotic genome is packaged as chromatin with nucleosomes comprising its basic structural unit, but the
detailed structure of chromatin and its dynamic remodeling in terms of individual nucleosome positions has not been
completely defined experimentally for any genome. We used ultra-high-throughput sequencing to map the
remodeling of individual nucleosomes throughout the yeast genome before and after a physiological perturbation that
causes genome-wide transcriptional changes. Nearly 80% of the genome is covered by positioned nucleosomes
occurring in a limited number of stereotypical patterns in relation to transcribed regions and transcription factor
binding sites. Chromatin remodeling in response to physiological perturbation was typically associated with the
eviction, appearance, or repositioning of one or two nucleosomes in the promoter, rather than broader region-wide
changes. Dynamic nucleosome remodeling tends to increase the accessibility of binding sites for transcription factors
that mediate transcriptional changes. However, specific nucleosomal rearrangements were also evident at promoters
even when there was no apparent transcriptional change, indicating that there is no simple, globally applicable
relationship between chromatin remodeling and transcriptional activity. Our study provides a detailed, high-
resolution, dynamic map of single-nucleosome remodeling across the yeast genome and its relation to global
transcriptional changes.



Aim of the work

Map remodeling of individual nucleosomes
before and after a physiological pertubation that
causes genome-wide transcriptional changes
In S. cerevisiae
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Nucleosome positions

* influenced by the remodelers & transcriptional
machinery

* determined by the intrinsic signals in genomic
DNA (Segal et al)



Positions mapped

* Previously used tiling arrays (5bp resolution)

* This study: Solexa high-throughput
sequencing of nucleosome associated DNA

ends (1bp resolution)

* Comparison of individual nucleosome
positions in different biological conditions



Study build-up

* Normal condition vs heat-shock (15')

* Extract mononucleosome-associated DNA
* Segquence ends of the fragments

* Take only uniq reads

* Align reads to the genome

* Define peaks with width 146bp

* Score such peaks from 2 replicates



* Number of nucleosomes:

- 49043 normal cells
- 52817 heat-shocked cells

* 73% of yeast genome covered by a positioned
nucleosome (estimation 78%)

* Mapped nucleosome positions overlap with
other studies
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Activation (C) and repression (D) by
C heat-shock
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Average nucleosome profile
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Position

Nucleosome free region before TSS is ~ 1 nucleosome wide

Strongly positioned nucleosome marking start of transcribed
region

Periodic intervals after TSS with decreasing probablities

Strongly positioned nucleosome at 3' end of coding region,
followed by nucleosome-free reqgion



Distance between nucleosomes
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TATA-box & transcription levels
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Position changes

* Majority of the nucleosomes do not change
their positions

* 65% of nucleosomes from normal cells were
nad moved less than 30bp after heat-shock

* Less than 10% of nucleosomes were displaced
more than 100bp after heat-shock



Periodicity of nucleosomes
In transcribed regions
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Nucleosome position periodicity
and transcription levels

* Strong periodicity in coding regions are
transcribed in lower levels (& vice versa)
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Sequence dependent positioning

* old and partly proven idea: nucleosome
positions are encoded in DNA

* futher idea: when a nucleosome has strongly
positioned “using” DNA encoded signals then
adjacent nucleosomes will be “stacked”
against it and there is no need for strong
signal in DNA for the rest
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A Activated genes
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B Repressed genes

Average profiles
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Ribosomal genes are shut down after heat-
shock

Ribosomal protein genes
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expression change
(1671 genes)

* Nucleosome dissapearance and
appearance are not only related
with transcriptional changes
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Nucleosome positions affect TFBSs
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Nucleosomes on stress-related TF
binding sites

* 55 transcription factors with functional binding
sites identified by ChIP-chip

* 3 classes of TFs based on their BS accessibility
after heat-shock
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Conclusions

* Strong nucleosome at TSS

* Well-positioned nucleosome at 3' end of
coding region (New!)

* After heat-shock most nucleosomes did not
change their positions

* Remodeling incorporates only one or two
nucleosomes at promoters

* Remodeling not always leads to transcriptional
change



