

Review

TRENDS in Biotechnology Vol.25 No.4

Nanopore sequencing technology: nanopore preparations

Minsoung Rhee¹ and Mark A. Burns^{1,2}

¹ Department of Chemical Engineering, University of Michigan Ann Arbor, MI 48109, USA ² Department of Biomedical Engineering, University of Michigan Ann Arbor, MI 48109, USA

Additional sources:

http://www.ks.uiuc.edu/Research/hemolysin/

Using nanopores

- Proven technique for sensing macromolecules
- A promising DNA sequencing method
 - single molecule sequencing
 - long reads
 - fast
 - simple preparation
- Currently limited success
 - can only discriminate
 - ssDNA / dsDNA
 - DNA / RNA homopolymers
 - single bases in hairpins

General nanopore detection principle

apply voltage, DNA moves through pore, changes in conductance, measure difference

TRANSLOCATION OF DNA THROUGH α -hemolysin PORE

K+ and CI- ION FLOW THROUGH THE PORE (U = 240mV)

A good pore

- Pore size must match analyte size
- Must be stable under various conditions
 - structural stability
 - electrical stability
- Easy to manufacture
- Possibility to integrate production
- Must be reproducible

Nanopores for DNA analysis

- Organic nanopores
 - $-\alpha$ -hemolysin
 - common usage (well researched)
 - ideal pore size
- Synthetic solid-state nanopores
 - various techniques
 - conventional
 - non-conventional
 - construction more flexible

the α -hemolysin pore

- First candidate for DNA detection
- Staphylococcus aureus 33kD monomeric transmembrane protein
- Self-assemble as heptamers on membranes and create a hydrophilic channel
 (a)
 Cap
- Pore size 15Å ideal for 13Å ssDNA analysis
- Steady current over large range – low background noise
- Highly reproducible

α-hemolysin assembly

- Separate buffer with a membrane
- Insert α-hemolysin in buffer
- α-hemolysin will form a channel
- max I = 120pA (120mV)

Other organic pores

- Seek proteins with:
 - different pore sizes
 - less laborious preparation
 - less modification
 - more robust
 - even better reproducibility

Other organic pores

- Mitochondrial porine (VDAC)
 - monomeric protein in outer m. membrane
 - 30Å aqueous pore (dsDNA)
 - formation similar to α -hemolysin
- Bacillus subtilis vesicle membrane ion channels
 - detect small plasmids
- E. Coli OmpF pores
 - pore size: 10–12Å (~ssDNA)
 - no DNA translocation so far detected

Other organic pores

- Nucleic acid binding protein (NAC) from a rat
 - opened by DNA presence \rightarrow increase in current
- Gramicidin pores
 - too small to translocate ssDNA
 - channel subunits mobile
 - fasten probe DNA to membrane
 - target DNA will bind to channel
 - on match subunits will be misalgined \rightarrow current decrease
 - measure hybridisation reaction rates

Synthetic nanopores

- Potential advantages
 - larger choice of sizes
 - protein pore diameter is fixed
 - better stability
 - lipids are fragile
 - proteins withstand only limited electrical oprations
 - simple charge distribution
 - protein conductance = sum of 10-15 nucleotides in pore
 - invariable in performance

Synthetic nanopores

- State-of-the art photolithography semiconductor technology
 - disadvantage: features > 100Å
- Ion beam sculpting
- Micromolding
- Latent track etching
- Electron beam-induced fine tuning
- Inorganic nanotubes

Ion beam sculpting

- Bombard material with high energy ions (>1000 eV)
 - $< 5C \rightarrow$ sputtering surface atoms removed
 - > 5C → lateral transport
- Fine-tune with ALD (atomic layer deposition)
 - fine tune pore size: ~1Å per cycle + add insulating AI_2O_3 coating
 - final result: 18Å min. size

Micromolding

- Conventional lithographic techniques
 - create a reusable master mold
 - pore: electron beam lithography
 - reservoirs: photolithography
 - substrate: silicon
 - cast into poly(dimethylsiloxane slab)
- Results:
 - pore size: 300Å (suitable for larger molecules)
 - simple, fast, reproducible
 - can create arrays of pores for parallel analysis

Latent track etching

- Method
 - Irradiate polymer film with fragments of energetic heavy ions
 - Ion fragments create a track into polymer on impact
 - Track can be etched chemically forming one-pore membrane
 - Coat pore walls with gold solutions \rightarrow gold nanotubules
- Results
 - 20Å (with gold coating)

Electron-beam induced fine tuning

- Method
 - Fabricate 340nm thick silicon membranes
 - Create 40nm SiO2 layer on both sides of membrane
 - Remove some SiO2 masks by laser-beams and etching
 - Drill holes with KOH etching + cover with 40nm SiO2
 - Fine tune with 300kV transmission electron microscopy
 - electron beam shrinks pores ~3Å / min
 - shrinkage depends on beam intensity and initial pore size
- Modifications: Ion beam sculpting + E-beam tuning
- Results: 10Å pore size (100Å before tuning)
- Advantages:
 - tight focus
 - direct visual feedback
 - variety of usable materials
- Disadvantages:
 - underlying physics not understood
 - might not be well reproducible

Inorganic nanotubes

Method

- Create a carbon nanotube
- Place on a grid
- Seal in liquid epoxy
- Cut thin slices from solid epoxy blocks
- Results
 - 500Å channels

Inorganic nanotubes

- Advantages
 - carbon properties well defined
 - carbon is electrically neutral
 - chemistry, structure known
 - · easy to make in various sizes
 - no high energy beams \rightarrow electric properties unchanged

Summary

- Most analyses performed with α-hemolysin
- Synthetic won't replace α-hemolysine in near future
 - underlying physics complicated
 - can give unreproducible results
- But are worth investigating
 - cheap integrated sequencing systems

	Protein α-Hemolysin assembly	Synthetic Ion beam sculpting	Micro- molding	Latent track etching	E-beam fine tuning	Nanotubes
Minimum pore diameter reported	1.5 (fixed)	1.8	80	2.0	1.0	50
Membrane material Pore material	Lipid bilayer α-hemolysin	Si ₃ N ₄ Si ₃ N ₄ , Al ₂ O ₃	PDMS	Poly-carbonate Gold layer	Si, SiO ₂ , Si ₃ N ₄	Epoxy, Si ₃ N ₄ MWNT
Remarks	Mass production	Size tuning	Easy fabrication	Conical shape	Visual fine tuning	Stable, uncharged

Table 1. Nanopores from various preparation procedures