Human metabolic network reconstruction

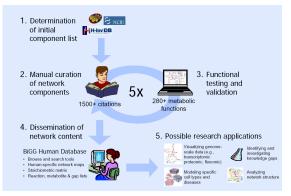
Hedi Peterson

BIIT

jclub 12.02.2007

Hedi Peterson Human metabolic network reconstruction

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()


- discovery of missing information
- formulation of in silico model
- structured context for analyzing high-throughput biological data sets

個人 くほん くほん 一足

- Human genome Build 35 1865 genes from KEGG
- Genes mapped to 3623 metabolic enzymes & 3672 reactions
- Over 1500 articles, reviews, biochemical books (from more than 50 years)

- Input: bottom-up reconstruction of Biochemically, Genetically, Genomically structured reconstruction
- Outcome: *in silico* model for computing allowable network states under governing chemical and genetic constraints
- Validation: simulating 288 known metabolic functions in silico (5 iterative rounds)

個人 くほん くほん 一足

イロン 不得 とくほ とくほう 一座

Formulated metabolites and reactions

- known reaction stoichometry
- substrate/cofactor specificity
- substrate/cofactor directionality
- overall conservation of mass and charge-based metabolite ioniation states at pH 7.2

Compartmentalization of metabolites

- intracellular: cytoplasm, mitochondria, nucleus, ER, Golgi complex, lysososome, peroxisome
- extracellular environment
- Boolean descriptions of gene-protein relationships
 - alternative spliced variants
 - protein complexes
 - isozymes

• Confidence scores and literature references

▲ ■ ▶ ▲ 国 ▶ ▲ 国 ▶

- Formulated metabolites and reactions
 - known reaction stoichometry
 - substrate/cofactor specificity
 - substrate/cofactor directionality
 - overall conservation of mass and charge-based metabolite ioniation states at pH 7.2
- Compartmentalization of metabolites
 - intracellular: cytoplasm, mitochondria, nucleus, ER, Golgi complex, lysososome, peroxisome
 - extracellular environment
- Boolean descriptions of gene-protein relationships
 - alternative spliced variants
 - protein complexes
 - isozymes

• Confidence scores and literature references

(日本)(日本)(日本)(日本)

- Formulated metabolites and reactions
 - known reaction stoichometry
 - substrate/cofactor specificity
 - substrate/cofactor directionality
 - overall conservation of mass and charge-based metabolite ioniation states at pH 7.2
- Compartmentalization of metabolites
 - intracellular: cytoplasm, mitochondria, nucleus, ER, Golgi complex, lysososome, peroxisome
 - extracellular environment
- Boolean descriptions of gene-protein relationships
 - alternative spliced variants
 - protein complexes
 - isozymes

Confidence scores and literature references

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Formulated metabolites and reactions
 - known reaction stoichometry
 - substrate/cofactor specificity
 - substrate/cofactor directionality
 - overall conservation of mass and charge-based metabolite ioniation states at pH 7.2
- Compartmentalization of metabolites
 - intracellular: cytoplasm, mitochondria, nucleus, ER, Golgi complex, lysososome, peroxisome
 - extracellular environment
- Boolean descriptions of gene-protein relationships
 - alternative spliced variants
 - protein complexes
 - isozymes
- Confidence scores and literature references

・ 同 ト ・ ヨ ト ・ ヨ ト …

Component	Number	
Genes	1,496	
Transcripts*	1,905	
Proteins	2,004	
Complex-associated reactions*	248	
Isozyme-associated reactions*	946	
Intrasystem reactions	3,311	
Metabolic	2,233	
Transport ⁺	1,078	
Exchange reactions ⁺	432	
Compartment-specific metabolites	2,712	
Cytoplasm	995	
Extracellular space	388	
Mitochondrion	383	
Golgi apparatus	279	
Endoplasmic reticulum	231	
Lysosome	207	
Peroxisome	139	
Nucleus	90	
Citations	1,587	
Primary literature	1,378	
Review articles	188	
Textbooks	21	
Validated metabolic functions	288	
Knowledge gaps [‡]	356	 (ロ> (個) (言) (言) (言) (言) (つ) (つ) (つ) (つ) (つ) (つ) (つ) (つ) (つ) (つ

Building the network

- Initial component list
- Eight metabolic subsets
 - Amino acids
 - Carbohydrates
 - Energy
 - Glycans
 - Lipids
 - Nucleotides
 - Secondary metabolites/xenobiotics
 - Vitamins & cofactors

(雪) (ヨ) (ヨ)

- Reaction directionality from thermodynamic data or inferred from legacy data and textbooks
- Compartmentalization from protein localization data, sequence targeting signals and indirect physiological evidence (else cytoplasmic)
- GTPR relationships were manually identified from literature
- Relationships were formulated as Boolean logic statements
 - **OR** Isozymes distinct proteins catalyzing same substrateand compartment specific reaction (1G - 2T or 2G)
 - AND Protein complexes when reactions depend on more than one protein

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

- I extensive primary literature
- II 1/2 highly characterized enzymes & 1/2 with moderate biological evidence
- III wide range of confidence scores and gene coverage

御 とくほ とくほ とう

- 3 classical biochemical or genetical evidence
- 2 physiological data or biochem/genetical data from non-humans
- 1 in silico modeling
- 0 unevaluated

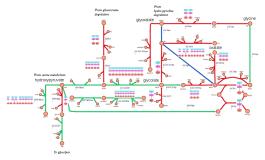
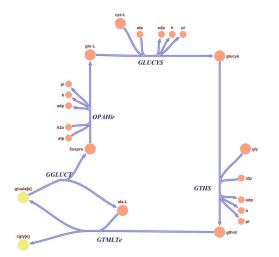


plate and Dicarboxylate Metabolism

Perezie and Glucuronate Intercome

100 Category

イロト イポト イヨト イヨト 二連一



Category II pathway - glyoxylate to glycine

< 注 → 注

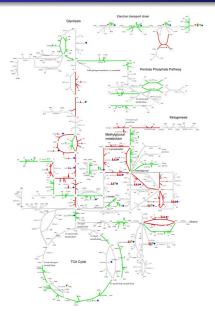
- Coupled reaction sets consist of reactions that are active together in functional states of a network
- Flux coupling analysis was used to identify coupled reaction sets under aerobic glucose metabolic conditions
- Example: glutathione reaction set

Glutathione reaction set

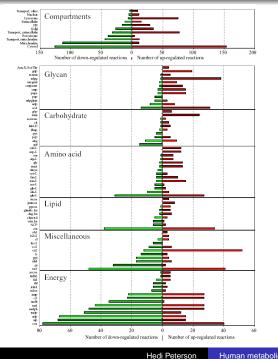
Both glutathione synthetase and glutamate-cysteine ligase deficiencies lead to hemolytic anemia.

э

- transcriptomic
- proteomic
- fluxomic
- metabolomic


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Combining expression data with metabolic networks an example


- Gastric bypass surgery effects on skeletal muscle metabolism
- Gene expression data before and after surgery
- Up-regulated anaerobic metabolism & down-regulated oxidative phosphorylation after surgery
- Genes in glycolysis, pentose phosphate pathway, methylglyocal metabolism, oxidative phosphorylation expression change

< 回 > < 回 > < 回 > -

Expression change related to gastric bypass surgery

프 > 프

Human metabolic network reconstruction

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- Duarte, Becker, Jamshidi, Thiele, Mo, Vo, Srivas & Paulsson
 Global reconstruction of the human metabolic network based on genomic and bibliomic data
 PNAS Feb 6th. vol 104 1777-1782
- Accessible at http://bigg.ucsd.edu

Single Value Decomposition (SVD)

```
Example
                                                                                                                                                                                                                      [edit]
Consider the matrix
      0 0 3 0 0
      0 0 0 0 0
      04000
Its singular value decomposition is
     U = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2236 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, V^{*} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0.894 \\ 0 & 0 & 0 & 1 & 0 \\ -0.894 & 0 & 0 & 0 & 0.47 \end{bmatrix}
                                                                                                            1000
                                                                                            -0.894 0 0 0 0.447
 that is
     \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 2 & 236 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 084 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}
     Notice above that I only has values in its diagonal. Furthermore, as you can see below, multiplying the matrices U and V by their
transpore yield an identity matrix.
 \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} 
and
0 0 0.447 0 -0.894 0 1 0 0
100000000100
                                                                                              0 1 0 0 0
 0 1 0 0 0 . 0.447 0 0 0 0.894 = 0 0 1 0 0
```

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで