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Simultaneously performed image segmentation and intensity estimation

Two-component mixture model
background intensity
foreground 1ntensity
=> Intensity measurement 1s a bivariate vector
(red and green intensities)

Background intensity component — bivariate gamma distribution

Foreground intensity component - bivariate t-distribution



Segmentation methods can be grouped for instance whether a parametric
distribution of the pixel intensity 1s assumed or not:

1. Nonparametric segmentation

* no particular type of distribution on intensities 1s assumed (e.g fixed circle

segmentation, adaptive circle segmentation, seeded region growing method)
2. Parametric segmentation
* distribution for intensity 1s specified up to a vector of unknown

parameters (e.g bivariate normal distribution, scaled bivariate normal

distribution, exponential distribution, uncorrelated bivariate t distribution)



Description of image segmentation and intensity estimation method

Presentation of the stable parameter estimation result of the proposed
method using synthetic data

Presentation of the segmentation and estimation results from applying

the method to two real experimental microarray image datasets
Comparision of the results with those from other methods

Summary of the method



microarray image analysis:

1. automatic gridding
2. model-based clustering of pixels
3. intensity estimation

Data

a pair of unsigned 16-bit images (.tiff) -> transformation of
1images (square root or logarithms) for:

- preventing very bright pixels from dominating
- makeing the work with images computationally more efficient



Automatic gridding

Identifying blocks and positioning rows and columns of spots
within each block

Using the combined 1image, projecting the intensities by summing
up across the pixels in each row and each column

Smoothing the projections using robust loess (bandwith — width
of a typical spot) -> series of peaks and valleys

Grid — drawing a line in each valley



Distribution of pixel intensities
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Kolmogorov-Smirnov goodness-of-fit test:

for checking the validity of the proposed distributions

Table 1. Mean P-values for goodness-of-fit test

Ry Gy, R_i" Gf
LExponential 0.2264 0.0119 0.0232 (.0279
(0.1405) (0.0036) (0.1031) (0.1276)
Normal 0.0012 0.0635 0.6913 ().5888
(0.0014) (0.0777) (0.7380) (0.6847)
Gammal/t 0.2325 0.2144 0.7726 0.7269
(0.1501) (0.1243) (0.8237) (0.8046)

Ry, Ry red intensity inbackground and foreground; Gy, G green intensity im background
and foreground. Mean P-values for the segmented data by the method of Lier al. (2005)
are in the parentheses.



Image segmentation and intensity estimation

Density function of observed intensities:
f(y; W)=1uf,(y; ©) + TLf,(y;1,.2,v), where W={O, i, Z, v, T},

f, and f, are the p.d.f for background and foreground pixel

intensity distributions, respectively

T — probaility that pixel belongs to the ith component

EM algorithm to obtain the maximum likelihood estimates of
the parameters in ¥



T, — the estimate of posterior probability that y, belongs to the

ith component of the mixture

Rectangle containing a spot — foreground at the center,
background surrounding the foreground -> neighboring pixels in
each segment must belong to the same class

Final step of EM: nonparametric kernel estimate "1, (*T; is

multiplied with weight), weight 1s dependent on &

h — bandwidth — how many neighboring pixels’ information 1s
needed to estimate the posterior probability of the pixel to be
classitied



Step for choosing the A4: different weights to the pixels at x;;’s

which are within x.+1.96A according to their closeness to X,

under the 95% confidence level; smoothing up to first nearest
pixel h~0.51

Pixels are segmented according to AT

jth pixel is classified as background if *1°,20.5
as foreground if AT°; <0.5



blank and low-expressed spots — they are flagged

BIC — Bayesian Information Criterion

m — the number of components in the mixture model

m=1 -> no foreground, only background
BIC <BIC, -> all pixels are treated as background

spot is flagged as a blank
intensity of spot 1s _not_ estimated

m=2 -> foreground + background

*1f spot is _not_ flagged as blank, BIC, is _not_ significantly less than BIC,

-> are there two groups in the spot rectangle?

If 0 < BIC,- BIC, < 9[BIC | for 0 <0<<1 -> spot is flagged as having low

expression (the pixels of uncertain classification); intensity of spot _is_
estimated



high-intensity artifact regions

Detected on the foreground in the valid spots

For each channel the intensities of the pixels segmented as foreground
are rearranged in ascending order

Q. and Q.. - 3rd quartile of the foreground pixel intensities of R and G

IQR, and IQR, - interquartile ranges of the same foreground pixel

Intensities

Pixel whith intensities R. and G. 1s classified as a high-intensity artifact
if R > Q.. +3xIQR, and G, > Q. + 3xIQR_..

High intensity artifacts are excluded from the foreground when the
foreground intensity is estimated



Intensity estimation

Spot intensity 1s estimated by maximum likelihood

The mean intensity of foreground = the mean intensity of
background

Estimation of intensity for each spot - log ratio of background-
corrected R and G intensities (log,("@" ,/*@,))



Results

1. Simulated data::segmentation

Spot rectangle 1s 17x17 pixels

Background: dist. - gamma(a,,[3,y), i=1,2, where a =1, 3,=0.1, y=7, a_=1,
B,=0.1, v,=7; K=(H.H,)'=(17,30)°

Foreground: two independent t distributions - location parameters [ = W . + 20,

DF v.=20, dispersion parameters 0°= 100.

(X, i X0 )) coordinate for the (i, j)th pixel in the spot rectangle located at ith

column and jth row of the rectangle lattice, where x iy Xz(ij)zl’ 2, ..., 17.

Intensity of the (1, j)th pixel is randomly generated from the foreground

distribution if (X, (ij)—9)2+(x2(ij)—9)2362, and from the background distribution

otherwise.



Fig. 2. (a and b): true image and scatter plot of the intensities indicating their
true classes; (¢ and d): image and scatter plot of the segmented intensities
based on non-smoothed posterior probability 7;;; (e and f): image and scatter
plot of the segmented intensities based on fi"” The circle in the scatter plot
corresponds to the foreground, and * to the background.



Results:: 1. Simulated data:: Intensity analysis

Table 2. The mean of the parameter estimates and the P-value for the r-test
on the parameter estimate. obtained from 100 synthetic spot data

A Ml Jp2 [ Mg b - loga(chy/chs)

b, 17.00  30.00  57.00 5000 4000 20.00 1.00
20 ¢ 17.21 3023 57.07 5001 3986 1978 1.01
P 0.00 0.02 0.31 090 0.15 009 0.19
g, 17.00 3000 77.00 6000 60.00 30.00 1.00
30 #1691 3006 77.04 5998 60.13 2991 1.0l
p 0.19 0.53 058 075 019 051 0.22
0, 17.00 3000 97.00 7000 80.00 40.00 1.00
40 @ 17.00 2999 97.00 7001 80.00 40.03 1.00
2 0944 0894 097 085 099 083 093

Wprs Mp2: mean red and green intensity in background: g, pt: mean red and green
mtensity in foreground: ¢ : sy — ppi i hat fpn — prpo: fy: true parameter value: 8: mean of
the parameter estimates; p: P-value for Hy : E(8) = 6.



Results::Real datasets:: GTMM, Spot software and spot-Segmentation

(a) original image (b) GTMM
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Conclusion

Gamma distribution for the background intensity:
- 1s very flexible in its shape (asymmetric exponential type to
symmetric normal type)
- 1s bivariate by taking the R and G intensities to be independent in
the background

Bivariate t distribution for the foreground intensity:

- provides a longer-tail alternative to the normal distribution

- less affected by atypical observations



Conclusion

EM algorithm to estimate the pixels’ posterior probabilities, a
nonparametric kernel smoothing technique that utilizes the neighborhood
information 1in forming the posterior probabilities for the final

segmentation.

Model constrains the mean intensity for the foreground to be greater than
that for the background.



