GENECODIS

A web-based tool for finding significant concurrent annotations in gene lists

Pedro Carmona-Saez et. al

GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists

Genome Biology 2007, 8:R3 doi:10.1186/gb-2007-8-1-r3

Pedro Carmona-Saez (pcarmona@cnb.uam.es) Monica Chagoyen (monica@cnb.uam.es) Francisco Tirado (ptirado@dacya.ucm.es) Jose M Carazo (carazo@cnb.uam.es) Alberto Pascual-Montano (pascual@fis.ucm.es)

Background

- Expression study or proteomics → list of potentially interesting genes or proteins.
 - e.g. genes transcribed only in pathological tissue.
- What is the molecular biology behind this?
- Next step: find out which functions are these genes associated with?
 - interpret and extract the knowledge from a large list of genes or proteins.
- Most applications find annotations that are significantly enriched in a list of genes compared to a reference set (genome, or genes used in microarray)
 - onto-Express was one of the first.
- GENECODIS takes it one step further.

GENECODIS

- A web based tool to find function of genes or proteins used in expression studies or proteomics.
- Find **combinations** annotations that are overrepresented in a list of genes compared to a reference set (genome, or genes used in microarray)
- Current tools
 - evaluate single annotations
 - don't take into account their potential relationships
- Sources: KEGG, Swiss-Prot, GO, InterPro
- Result: rank scores for single annotations and their combinations.
- Potentially important extension to existing tools.

Example of advantage

- Co-occurrence patterns add information.
- Single annotations have limitations
 - experiment result (other tool): "signal transduction"
 - concrete aspect of cell physiology
 - but used in many different biological processes
 - what is signalled?
 - co-occurs with "cell-proliferation"
 - this alone is insignificant many such annotations in DB compared to our list.
 - GENECODIS result: genes related to signalling cell-proliferation
 - Relevant associations might be underestimated if single annotation are taken into account.

Algorithm I

- User inputs a list of differentially expressed genes.
- Retrieve all DB (e.g. GO) annotations for every gene.
- Make a list of all frequently found annotations and their combinations (sets)
 - include only annotation combinations appearing in at least X genes
- Remove redundant sets (duplicate information)

Retrieve annotations for genes

• Retrieve annotations for each gene from the selected databases

• Make a list of all frequently appearing annotations and their co-occurences containing at least **X** genes

Annotations	# genes	genes
GO:0005759	8	ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0042645	5	ACO1,IDH1,KGD1,KGD2,LSC1
sce00020	12	ACO1,CIT1,CIT2,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2,LSC1,LSC2,YJL200C
sce00630	5	ACO1,CIT1,CIT2,CIT3,YJL200C
sce00720	3	ACO1,FUM1,YJL200C
GO:0005739	6	CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C

Finding frequently appearing sets

 To extract combinations of gene annotations GENECODIS uses a modification of the methodology reported in 2006 by Carmona-Saez et al., which implements the apriori algorithm to extract associations among gene annotations and expression patterns.

> Carmona-Saez P, Chagoyen M, Rodriguez A, Trelles O, Carazo JM, Pascual-Montano A: Integrated analysis of gene expression by Association Rules Discovery. *BMC Bioinformatics* 2006, 7:54.

The *apriori* algorithm was originally introduced in 1993 by Agrawal *et al*.and has been extensively used to extract association rules from transaction databases.

Agrawal R, Imielinski T, Swami A: **Mining Association Rules between Sets** of Items in Large Databases. In *Proceedings of the ACM SIGMOD international conference on Management of data; Washington, D.C.*; 1993: 207-216.

1. Find frequent 1-item sets

FINDING FREQUENTLY APPEARING SETS

Annotations	# genes	genes
GO:0005759	8	ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0042645	5	ACO1,IDH1,KGD1,KGD2,LSC1
sce00020	12	ACO1,CIT1,CIT2,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2,LSC1,LSC2,YJL200C
sce00630	5	ACO1,CIT1,CIT2,CIT3,YJL200C
sce00720	3	ACO1,FUM1,YJL200C
GO:0005739	6	CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C

2. Find frequent 2-item sets

Annotations	# genes	genes
GO:0005759,GO:0042645	4	ACO1,IDH1,KGD1,KGD2
GO:0005759,sce00020	8	ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0005759,sce00630	3	ACO1,CIT1,CIT3
GO:0042645,sce00020	5	ACO1,IDH1,KGD1,KGD2,LSC1
sce00020,sce00630	5	ACO1,CIT1,CIT2,CIT3,YJL200C
sce00020,sce00720	3	ACO1,FUM1,YJL200C
sce00020,GO:0005739	6	CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C
sce00630,GO:0005739	3	CIT1,CIT2,YJL200C

3. Find frequent 3-item sets

...repeat until no more itemsets with 3 genes

Annotations	# genes	genes
GO:0005759,GO:0042645,sce00020	4	ACO1,IDH1,KGD1,KGD2
GO:0005759,sce00020,sce00630	3	ACO1,CIT1,CIT3
sce00020,sce00630,GO:0005739	3	CIT1,CIT2,YJL200C

Remove redundant sets

[Annotations	# genes	genes		
[GO:0005759,GO:0042645	4	ACO1,IDH1,KGD1,KGD2		
•	GO:0005759,sce00020	8	ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2		
[GO:0005759,sce00630	3	ACO1,CIT1,CIT3		
▶ [GO:0042645,sce00020	5	ACO1,IDH1,KGD1,KGD2,LSC1		
[sce00020,sce00630	5	ACO1,CIT1,CIT2,CIT3,YJL200C		
[sce00020,sce00720	3	ACO1,FUM1,YJL200C		
[sce00020,GO:0005739	6	CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C		
[sce00630,GO:0005739	3	CIT1,CIT2,YJL200C		
	sce00020,sce00720 sce00020,GO:0005739 sce00630,GO:0005739	3 6 3	ACO1,FUM1,YJL200C CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C CIT1,CIT2,YJL200C		

Annotations	# genes	genes
GO:0005759,GO:0042645,sce00020	4	ACO1,IDH1,KGD1,KGD2
GO:0005759,sce00020,sce00630	3	ACO1,CIT1,CIT3
sce00020,sce00630,GO:0005739	3	CIT1,CIT2,YJL200C

Redundant itemset - subset of a larger itemset that has >= support value (genes). No loss of information.

Algorithm II

- Test statistically which sets are overrepresented in genelist compared to the reference list
 - find frequency of occurences of each set in the genelist and reference list.
 - default reference list: NCBI Entrez Gene DB of corresponding genome.
 - statistical Tests in GENECODIS:
 - hypergeometric distribution
 - chi-square test of independence
 - get p-values
 - low p-value means an annotation shouldn't appear in your genelist solely by chance.
 - many genelist genes have an annotation low p-value
 - many reference list genes have an annotation high p-value
 - correct p-values for multiple tests
 - simulation based method
 - false discovery method

Statistical tests

- Compute frequency of each set
- Calculate p-values
- Correct p-values
 - simulations based method
 - false discovery method

Annotation/s	# List	# Reference	<i>p</i> -value	Corrected p-value	Genes	Description/s	
00020	12(12)	30(6194)	1.90e-28	1.90e-27	CIT2, ACO1, KGD2, LSC2, YJL200C, IDH2, LSC1, KGD1, IDH1, CIT1, FUM1, CIT3	KEGG)Citrate cycle (TCA cycle)	
00020, <u>GO:0005759</u>	8(12)	9(6194)	1.52e-21	1.52e-20	ACO1, KGD2, IDH2, KGD1, IDH1, CIT1, FUM1, CIT3	(KEGG)Citrate cycle (TCA cycle) (CC)mitochondrial matrix	
<u>00020, GO:0005739</u>	6(12)	9(6194)	5.43e-15	5.43e-14	CIT2, LSC2, YJL200C, IDH2, LSC1, CIT1	KEGG)Citrate cycle (TCA cycle) CC)mitochondrion	
00020, <u>GO:0042645</u>	5(12)	7(6194)	5.83e-13	5.83e-12	<u>ACO1, KGD2, LSC1, KGD1, IDH1</u>	KEGG)Citrate cycle (TCA cycle) (CC)mitochondrial nucleoid	
<u>00020, 00630</u>	5(12)	8(6194)	2.62e-12	2.62e-11	<u>СІТ2, ACO1, YJL200С, СІТ1, СІТ3</u>	[KEGG)Citrate cycle (TCA cycle) [KEGG)Glyoxylate and dicarboxylate metabolism	

Algorithm III

- User chooses a p-value threshold
- Consider annotation sets below threshold as biologically significant to your experiment.

Annotation/s	# List	# Reference	<i>p</i> -value	Corrected p-value	Genes	Description/s	
00020	12(12)	30(6194)	1.90e-28	1.90e-27	CIT2, ACO1, KGD2, LSC2, YJL200C, IDH2, LSC1, KGD1, IDH1, CIT1, FUM1, CIT3	KEGG)Citrate cycle (TCA cycle)	
00020, <u>GO:0005759</u>	8(12)	9(6194)	1.52e-21	1.52e-20	ACO1, KGD2, IDH2, KGD1, IDH1, CIT1, FUM1, CIT3	KEGG)Citrate cycle (TCA cycle) CC)mitochondrial matrix	
00020, <u>GO:0005739</u>	6(12)	9(6194)	5.43e-15	5.43e-14	<u>CIT2, LSC2, YJL200C, IDH2, LSC1,</u> <u>CIT1</u>	KEGG)Citrate cycle (TCA cycle) CC)mitochondrion	
00020, <u>GO:0042645</u>	5(12)	7(6194)	5.83e-13	5.83e-12	<u>ACO1, KGD2, LSC1, KGD1, IDH1</u>	KEGG)Citrate cycle (TCA cycle) CC)mitochondrial nucleoid	
<u>00020, 00630</u>	5(12)	8(6194)	2.62e-12	2.62e-11	<u>СІТ2, ACO1, YJL200C, СІТ1, СІТ3</u>	(KEGG)Citrate cycle (TCA cycle) (KEGG)Glyoxylate and dicarboxylate metabolism	

Algorithm characteristics

- Computation time is increased by:
 - searching larger / more databases
 - decreasing minimum support value → more algorithm cycles.
 - e.g. Searching for all possible combinations that appear in at least 1 gene is often computationally unfeasible.
- Suggested minimum support value: 3

GENECODIS at work

- Human data 85 expressed genes
 - GTOM program by Zhang
 - data from GO Biological Processses
 - resulting annotations: 1) cell proliferation; 2) testis-specific developement; 3) protein phosphorylation; 4) glycerolipid metabolism.
 - GENECODIS
 - data: GO Biological Processes, InterPro motifs
 - X = 3
 - result differences:
 - no glycerolipid metabolism (appeared in 2 genes only)
 - extra info: co-annotation with "protein phosphorylation" + "cell cycle" + "protein kinase motifs"
 - Zhang related "phosphorylation" to sperm proteins in general
 - GENECODIS finding was confirmed by other studies in literature.

Implementation

- Free web-based tool
- Users can upload gene lists
 - gene Symbols, Entrez ID, Unigene ID etc
 - duplicated ID-s considered unique
- Sources of annotation
 - NCBI Entrez Gene database → GO annotations
 - Biological Process
 - Cellular Component
 - Molecular Function
 - KEGG database
 - metabolic pathways
 - Swiss-Prot database
 - Swiss-Prot keywords
 - InterPro motifs
- Supported organisms
 - Total 11; including Arabidopsis thaliana, Danio rerio, Homo sapiens
- Computing power: 16 processors

Other methods

Tool	Statistical Model	Annotations supported	Organisms	Scope	Term co-occurrences
FatiGO+ (Al-Shahrour et al., 2005)	Fisher's exact test (Step-down minP, FDR)	Gene Ontology, KEGG pathways, Interpro Motifs, SwisProt keywords, Transcription factors, cis-regulatory elements	A. thaliana C. elegans D. melanogaster G. gallus H. sapiens M. musculus R. norvegicus S. cerevisiae S. coelicolor	Multiple categories	No
Onto-Express (Khatri et al., 2002)	Hypergeometric, Binomial, Fisher's exact test, χ^2 (Sidák, Holm, Bonferroni, FDR)	Gene Ontology, KEGG pathways, chromosome regions	more than 20 organisms	Multiple categories	No
GeneMerge* (Castillo-Davis et al., 2003)	Hypergometric (Bonferroni)	Gene Ontology, KEGG pathways, Chromosomal Location	20 different organisms	One category	No
DAVID 2006 (Dennis et al., 2003)	Fisher's exact test (None)	Gene Ontology, Protein Domains, Pathways, General Annotations, Functional Categories, Functional Interaction, Literature Diseases	more than 20 organisms	Multiple categories	No
WebGestalt** (Zhang et al., 2005)	Hypergometric, Fisher's exact test (None)	Gene Ontology, KEGG pathways, BioCarta pathways, Protein Domains	H. sapiens M. musculus	Multiple Categories	No
GENECODIS	Hypergometric, χ^2 (simulation, FDR)	Gene Ontology, KEGG pathways, Interpro Motifs, SwisProt keywords	A. thaliana B. taurus C. elegans D. melanogaster D. rerio G. gallus H. sapiens M. musculus R. norvegicus S. cerevisiae S. Pombe	Multiple categories	Yes

Conclusion

- Importance of ontological analysis of such genelists is provent.
- Most current methods generate statistical scores for single annotations.
- GENECODIS provides statistical scores also for combinations of annotations.
- There is no other like this!

Execution time for real data

Minimum support value vs maximum length of combination

