Pathway recognition and augmentation by computational analysis of microarray expression data

(Barbara A. Novak and Ajay N. Jain)

Priit Adler

JournalClub 13. march 2006.

result

- they present a system, QPACA (Qunatitative Pathway Analysis in Canser)
 - supports data visualization and both fine- and coarse-grained specification
 - adresses the problems of pathway recognition and pathway augmentation

why?

- there's quite a bit of experimental data, but is it always revalent?
- same condition may be resulted from different causes (like cancer from different tumors).

method

optimization

```
For 20 iterations:
choose a random subset of samples S_{\text{init}} \subset S.
number_iterations := 0
S_{\text{current}} := S_{\text{init}}
do until no change in S_{\text{current}} or number_iterations == 600:
   s_{\text{new}} := \text{pick random sample } s_{\text{new}} \in S \cap S_{\text{current}}
   s_{\text{old}} := \text{pick random sample } s_{\text{old}} \in S_{\text{current}}
   S_{\text{test}} := (S_{\text{current}} - S_{\text{old}}) \cup S_{\text{new}}
   if score(G_{path}, S_{test}, E) > score(G_{path}, S_{current}, E)
        S_{\text{current}} := S_{\text{test}}
   ++number iterations
if first iteration or score(G_{path}, S_{current}, E) > score(G_{path}, S_{path}, E)
   S_{\text{path}} := S_{\text{current}}
```


performance evaluation

- one possible application is to test whether a gene set is behaving in a coordinated fashion, and whether the coordination is relevant to our notion of a biological pathway
- also can apply question of biological pathway augmentation

datasets

- yeast
- human (cancer)

- Permutation testing and p-value calculation
 - scores resulting from randomly chosen gene sets of the same size as the pathway set in question
 - scores resulting from randomizing the gene expression data itself
 - scores resulting from randmoly chosen gene sets of the same size as pathway set in question, restricted to genes represented within KEGG

- Cross-validation in biological pathway augmentation
 - pathways with all tree permutation-based p-values < 0.1 where excluded. (don't add anything if can't recognise pathway)
 - from rest 10 % of genes were heldout,
 - then scores calculated to those that left
 - added heldouts and backround
 - ranked by score.

results

 p-value x can be interpreted as the probability that a random set of genes will yield a p-value of less than or equal to x

Cumulative histograms of permutation-based *p*-values for all analyzed pathways. Most pathways (117/191 or 61%) had significant scores (p 0.05) under the most stringent of these methods, indicating that this method is reproducible over a large and varied set of pathways.

Cumulative histograms of the p-values with optimization for all pathways (solid line), all pathways without optimization (dotted line) and for those pathways with >= 30 genes using optimization (dashed line). For each case, the randomization permutation method was used. The optimization method clearly improves the p-value distribution over no optimization (p << 0.001 by Mann–Whitney), and restriction to larger gene set sizes also improves the p-value distribution (p << 0.001 by Mann–Whitney).

Thank you!

RTK Pathway

